Decarboxylative allylation of amino alkanoic acids and esters via dual catalysis
- PMID: 25228064
- PMCID: PMC4183636
- DOI: 10.1021/ja508317j
Decarboxylative allylation of amino alkanoic acids and esters via dual catalysis
Abstract
A combination of photoredox and palladium catalysis has been employed to facilitate the room temperature decarboxylative allylation of recalcitrant α-amino and phenylacetic allyl esters. This operationally simple process produces CO2 as the only byproduct and provides direct access to allylated alkanes. After photochemical oxidation, the carboxylate undergoes radical decarboxylation to site-specifically generate radical intermediates which undergo allylation. A radical dual catalysis mechanism is proposed. Free phenylacetic acids were also allylated utilizing similar reactions conditions.
Figures
References
-
-
For examples of dual catalytic systems containing photoredox catalysts, see:
- Kalyani D.; McMurtrey K. B.; Neufeldt S. R.; Sanford M. S. J. Am. Chem. Soc. 2011, 133, 18566. - PMC - PubMed
- Ye Y.; Sanford M. S. J. Am. Chem. Soc. 2012, 134, 9034. - PMC - PubMed
- Rueping M.; Koenigs R. M.; Poscharny K.; Fabry D. C.; Leonori D.; Vila C. Chem.—Eur. J. 2012, 18, 5170. - PubMed
- Sahoo B.; Hopkinson M. N.; Glorius F. J. Am. Chem. Soc. 2013, 135, 5505. - PubMed
- Shu X.; Zhang M.; He Y.; Frei H.; Toste F. D. J. Am. Chem. Soc. 2014, 136, 5844. - PMC - PubMed
- Tellis J. C.; Primer D. N.; Molander G. A. Science. 2014, 345, 433. - PMC - PubMed
- Zuo Z.; Ahneman D.; Chu L.; Terrett J.; Doyle A. G.; MacMillan D. W. C. Science. 2014, 345, 437. - PMC - PubMed
-
-
- Joschek H.-I.; Grossweiner L. I. J. Am. Chem. Soc. 1966, 88, 3261. - PubMed
- Davidson R. S.; Steiner P. R. J. Chem. Soc. C 1971, 1682.
- Davidson R. S.; Steiner P. R. J. Chem. Soc., Perkin Trans. 2 1972, 1357.
- Meiggs T. O.; Grossweiner L. I.; Miller S. I. J. Am. Chem. Soc. 1972, 94, 7981.
- Battacharyya S. N.; Das P. K. J. Chem. Soc., Faraday Trans. 2 1984, 80, 1107.
- D’Alessandro N.; Albini A.; Mariano P. S. J. Org. Chem. 1993, 58, 937.
- H. Habibi M.; Farhadi S. J. Chem. Res. (S) 1998, 776.
- Su Z.; Mariano P. S.; Falvey D. E.; Yoon U. C.; Oh S. W. J. Am. Chem. Soc. 1998, 120, 10676.
- Xu M.; Wan P. Chem. Commun. 2000, 2147.
- Gould I. R.; Lenhard J. R.; Farid S. J. Phys. Chem. A 2004, 108, 10949.
- Poupko R.; Rosenthal I.; Elad D. Photochem. Photobiol. 1973, 17, 395.
-
- Anderson J. M.; Kochi J. K. J. Am. Chem. Soc. 1970, 92, 2450.
- Trahanovsky W. S.; Cramer J.; Brixius D. W. J. Am. Chem. Soc. 1974, 96, 1077.
- Dessau R. M.; Heiba E. I. J. Org. Chem. 1975, 40, 3647.
- Linstead R. P.; Shephard B. R.; Weedon B. C. L. J. Chem. Soc. 1951, 1130.
-
- Griesbeck A. G.; Heinrich T.; Oelgemöller M.; Lex J.; Molis A. J. Am. Chem. Soc. 2002, 124, 10972. - PubMed
- Griesbeck A. G.; Heinrich T.; Oelgemöller M.; Molis A.; Heidtmann A. Helv. Chim. Acta 2002, 85, 4561.
- Yoshimi Y.; Masuda M.; Mizunashi T.; Nishikawa K.; Maeda K.; Koshida N.; Itou T.; Morita T.; Hatanaka M. Org. Lett. 2009, 11, 4652. - PubMed
- Yoshimi Y.; Kobayashi K.; Kamakura H.; Nishikawa K.; Haga Y.; Maeda K.; Morita T.; Itou T.; Okada Y.; Hatanaka M. Tetrahedron Lett. 2010, 51, 2332.
- Nishikawa K.; Yoshimi Y.; Maeda K.; Morita T.; Takahashi I.; Itou T.; Inagaki S.; Hatanaka M. J. Org. Chem. 2012, 78, 582. - PubMed
- Nishikawa K.; Ando T.; Maeda K.; Morita T.; Yoshimi Y. Org. Lett. 2013, 15, 636. - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
