Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Oct 1;136(39):13606-9.
doi: 10.1021/ja508317j. Epub 2014 Sep 22.

Decarboxylative allylation of amino alkanoic acids and esters via dual catalysis

Affiliations

Decarboxylative allylation of amino alkanoic acids and esters via dual catalysis

Simon B Lang et al. J Am Chem Soc. .

Abstract

A combination of photoredox and palladium catalysis has been employed to facilitate the room temperature decarboxylative allylation of recalcitrant α-amino and phenylacetic allyl esters. This operationally simple process produces CO2 as the only byproduct and provides direct access to allylated alkanes. After photochemical oxidation, the carboxylate undergoes radical decarboxylation to site-specifically generate radical intermediates which undergo allylation. A radical dual catalysis mechanism is proposed. Free phenylacetic acids were also allylated utilizing similar reactions conditions.

PubMed Disclaimer

Figures

Scheme 1
Scheme 1. Benzylic Allylation
Scheme 2
Scheme 2. Scope of Amino Alkanoic Esters,b
Reactions performed on a 0.25 mmol scale. b Isolated yields. c ∼95% pure see SI for more information.
Scheme 3
Scheme 3. Regiospecific Allylation
Scheme 4
Scheme 4. Allylation of Amino Alkanoic Acids,b
Reactions performed on a 0.25 mmol scale. b Isolated yields. c The ratio of 2a/3a was measured by GC/MS to be 2:1.
Scheme 5
Scheme 5. A Plausible Mechanism

References

    1. For recent reviews, see:

    2. Weaver J. D.; Recio A. III; Grenning A. J.; Tunge J. A. Chem. Rev. 2011, 111, 1846. - PMC - PubMed
    3. Rodriguez N.; Goossen L. J. Chem. Soc. Rev. 2011, 40, 5030. - PubMed
    4. Dzik W. I.; Lange P. P.; Goossen L. J. Chem. Sci. 2012, 3, 2671.
    1. For examples of dual catalytic systems containing photoredox catalysts, see:

    2. Kalyani D.; McMurtrey K. B.; Neufeldt S. R.; Sanford M. S. J. Am. Chem. Soc. 2011, 133, 18566. - PMC - PubMed
    3. Ye Y.; Sanford M. S. J. Am. Chem. Soc. 2012, 134, 9034. - PMC - PubMed
    4. Rueping M.; Koenigs R. M.; Poscharny K.; Fabry D. C.; Leonori D.; Vila C. Chem.—Eur. J. 2012, 18, 5170. - PubMed
    5. Sahoo B.; Hopkinson M. N.; Glorius F. J. Am. Chem. Soc. 2013, 135, 5505. - PubMed
    6. Shu X.; Zhang M.; He Y.; Frei H.; Toste F. D. J. Am. Chem. Soc. 2014, 136, 5844. - PMC - PubMed
    7. Tellis J. C.; Primer D. N.; Molander G. A. Science. 2014, 345, 433. - PMC - PubMed
    8. Zuo Z.; Ahneman D.; Chu L.; Terrett J.; Doyle A. G.; MacMillan D. W. C. Science. 2014, 345, 437. - PMC - PubMed
    1. Joschek H.-I.; Grossweiner L. I. J. Am. Chem. Soc. 1966, 88, 3261. - PubMed
    2. Davidson R. S.; Steiner P. R. J. Chem. Soc. C 1971, 1682.
    3. Davidson R. S.; Steiner P. R. J. Chem. Soc., Perkin Trans. 2 1972, 1357.
    4. Meiggs T. O.; Grossweiner L. I.; Miller S. I. J. Am. Chem. Soc. 1972, 94, 7981.
    5. Battacharyya S. N.; Das P. K. J. Chem. Soc., Faraday Trans. 2 1984, 80, 1107.
    6. D’Alessandro N.; Albini A.; Mariano P. S. J. Org. Chem. 1993, 58, 937.
    7. H. Habibi M.; Farhadi S. J. Chem. Res. (S) 1998, 776.
    8. Su Z.; Mariano P. S.; Falvey D. E.; Yoon U. C.; Oh S. W. J. Am. Chem. Soc. 1998, 120, 10676.
    9. Xu M.; Wan P. Chem. Commun. 2000, 2147.
    10. Gould I. R.; Lenhard J. R.; Farid S. J. Phys. Chem. A 2004, 108, 10949.
    11. Poupko R.; Rosenthal I.; Elad D. Photochem. Photobiol. 1973, 17, 395.
    1. Anderson J. M.; Kochi J. K. J. Am. Chem. Soc. 1970, 92, 2450.
    2. Trahanovsky W. S.; Cramer J.; Brixius D. W. J. Am. Chem. Soc. 1974, 96, 1077.
    3. Dessau R. M.; Heiba E. I. J. Org. Chem. 1975, 40, 3647.
    4. Linstead R. P.; Shephard B. R.; Weedon B. C. L. J. Chem. Soc. 1951, 1130.
    1. Griesbeck A. G.; Heinrich T.; Oelgemöller M.; Lex J.; Molis A. J. Am. Chem. Soc. 2002, 124, 10972. - PubMed
    2. Griesbeck A. G.; Heinrich T.; Oelgemöller M.; Molis A.; Heidtmann A. Helv. Chim. Acta 2002, 85, 4561.
    3. Yoshimi Y.; Masuda M.; Mizunashi T.; Nishikawa K.; Maeda K.; Koshida N.; Itou T.; Morita T.; Hatanaka M. Org. Lett. 2009, 11, 4652. - PubMed
    4. Yoshimi Y.; Kobayashi K.; Kamakura H.; Nishikawa K.; Haga Y.; Maeda K.; Morita T.; Itou T.; Okada Y.; Hatanaka M. Tetrahedron Lett. 2010, 51, 2332.
    5. Nishikawa K.; Yoshimi Y.; Maeda K.; Morita T.; Takahashi I.; Itou T.; Inagaki S.; Hatanaka M. J. Org. Chem. 2012, 78, 582. - PubMed
    6. Nishikawa K.; Ando T.; Maeda K.; Morita T.; Yoshimi Y. Org. Lett. 2013, 15, 636. - PubMed

LinkOut - more resources