Local and regional scale genetic variation in the Cape dune mole-rat, Bathyergus suillus
- PMID: 25229558
- PMCID: PMC4167993
- DOI: 10.1371/journal.pone.0107226
Local and regional scale genetic variation in the Cape dune mole-rat, Bathyergus suillus
Abstract
The distribution of genetic variation is determined through the interaction of life history, morphology and habitat specificity of a species in conjunction with landscape structure. While numerous studies have investigated this interplay of factors in species inhabiting aquatic, riverine, terrestrial, arboreal and saxicolous systems, the fossorial system has remained largely unexplored. In this study we attempt to elucidate the impacts of a subterranean lifestyle coupled with a heterogeneous landscape on genetic partitioning by using a subterranean mammal species, the Cape dune mole-rat (Bathyergus suillus), as our model. Bathyergus suillus is one of a few mammal species endemic to the Cape Floristic Region (CFR) of the Western Cape of South Africa. Its distribution is fragmented by rivers and mountains; both geographic phenomena that may act as geographical barriers to gene-flow. Using two mitochondrial fragments (cytochrome b and control region) as well as nine microsatellite loci, we determined the phylogeographic structure and gene-flow patterns at two different spatial scales (local and regional). Furthermore, we investigated genetic differentiation between populations and applied Bayesian clustering and assignment approaches to our data. Nearly every population formed a genetically unique entity with significant genetic structure evident across geographic barriers such as rivers (Berg, Verlorenvlei, Breede and Gourits Rivers), mountains (Piketberg and Hottentots Holland Mountains) and with geographic distance at both spatial scales. Surprisingly, B. suillus was found to be paraphyletic with respect to its sister species, B. janetta-a result largely overlooked by previous studies on these taxa. A systematic revision of the genus Bathyergus is therefore necessary. This study provides a valuable insight into how the biology, life-history and habitat specificity of animals inhabiting a fossorial system may act in concert with the structure of the surrounding landscape to influence genetic distinctiveness and ultimately speciation.
Conflict of interest statement
Figures
References
-
- Smit HA, Jansen van Vuuren B, O’Brien PCM, Ferguson-Smith M, Yang F, et al. (2011) Phylogenetic relationships of elephant-shrews (Afrotheria, Macroscelididae). J Zool 284: 1–11.
-
- Avise JC (1994) Molecular markers, natural history and evolution. New York: Chapman and Hall.
-
- Katongo C, Koblmüller S, Duftner N, Makasa L, Sturmbauer C (2005) Phylogeography and speciation in the Pseudocrenilabrus philander species complex in Zambian Rivers. Hydrobiologia 542: 221–233.
-
- Cook BD, Baker AM, Page TJ, Hawcett JH, Hurwood DA, et al. (2006) Biogeographic history of an Australian freshwater shrimp, Paratya australiensis (Atyidae): the role life history transition in phylogeographic diversification. Mol Ecol 15: 1083–1093. - PubMed
-
- Hughes JM, Schmidt DJ, Finn DS (2009) Genes in streams: using DNA to understand the movement of freshwater fauna and their riverine habitat. BioScience 59: 573–583.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
