Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Oct 21;86(20):10437-44.
doi: 10.1021/ac502955w. Epub 2014 Oct 1.

Superhydrophobic-oleophobic Ag nanowire platform: an analyte-concentrating and quantitative aqueous and organic toxin surface-enhanced Raman scattering sensor

Affiliations

Superhydrophobic-oleophobic Ag nanowire platform: an analyte-concentrating and quantitative aqueous and organic toxin surface-enhanced Raman scattering sensor

Xing Li et al. Anal Chem. .

Abstract

The ultratrace detection and quantification of toxins in both water and organic liquids remains a challenge due to the random spreading and dilution of liquids on substrate-based sensors, especially for organic liquids with low surface tension. Herein, we fabricate a superhydrophobic-oleophobic (SHP-OP) 3D Ag nanowire mesh-like surface-enhanced Raman scattering (SERS) platform to overcome the random spreading issue, demonstrating ultratrace toxin sensing in both water and organic liquid. Our SHP-OP SERS platform is able to concentrate analyte solutions in water and toluene to 100-fold and 8-fold smaller areas, respectively, as compared to its omniphilic counterparts. The synergy of analyte-concentrating ability and intense SERS-enhancing properties on our SHP-OP SERS platform enables quantitative and ultratrace detection of melamine and Sudan I down to 0.1 fmol in water and toluene, respectively, using just 1 μL of analyte solution. These detection limits are 10(3)-fold lower than the regulatory limits, clearly indicating our SHP-OP SERS platform as an appealing universal ultratrace toxin sensor. The ultratrace detection of spiked melamine in liquid milk down to 100 fmol also highlights the suitability of our SHP-OP SERS platform for the sensing of food toxins in real samples.

PubMed Disclaimer

Publication types

LinkOut - more resources