Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Jun;21(3):242-8.
doi: 10.1007/s13365-014-0281-3. Epub 2014 Sep 19.

Role of myeloid cells in HIV-1-host interplay

Affiliations
Review

Role of myeloid cells in HIV-1-host interplay

Mario Stevenson. J Neurovirol. 2015 Jun.

Abstract

The AIDS research field has embarked on a bold mission to cure HIV-1-infected individuals of the virus. To do so, scientists are attempting to identify the reservoirs that support viral persistence in patients on therapy, to understand how viral persistence is regulated and to come up with strategies that interrupt viral persistence and that eliminate the viral reservoirs. Most of the attention regarding the cure of HIV-1 infection has focused on the CD4+ T cell reservoir. Investigators are developing tools to probe the CD4+ T cell reservoirs as well as in vitro systems that provide clues on how to perturb them. By comparison, the myeloid cell, and in particular, the macrophage has received far less attention. As a consequence, there is very little understanding as to the role played by myeloid cells in viral persistence in HIV-1-infected individuals on suppressive therapy. As such, should myeloid cells constitute a viral reservoir, unique strategies may be required for their elimination. This article will overview research that is examining the role of macrophage in virus-host interplay and will discuss features of this interplay that could impact efforts to eliminate myeloid cell reservoirs.

PubMed Disclaimer

Conflict of interest statement

The author declares that he has no conflict of interest.

Similar articles

Cited by

References

    1. Alfano M, Graziano F, Genovese L, Poli Macrophage polarization at the crossroad between HIV-1 infection and cancer development. Arterioscler Thromb Vasc Biol. 2013;33:1145–1152. - PubMed
    1. Archin NM, Liberty AL, Kashuba AD, Choudhary SK, Kuruc JD, Crooks AM, Parker DC, Anderson EM, Kearney MF, Strain MC, Richman DD, Hudgens MG, Bosch RJ, Coffin JM, Eron JJ, Hazuda DJ, Margolis DM. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature. 2012;487:482–5. - PMC - PubMed
    1. Ayinde D, Casartelli N, Schwartz O. Restricting HIV the SAMHD1 way: through nucleotide starvation. Nat Rev Microbiol. 2012;10:675–80. - PubMed
    1. Bailey JR, Sedaghat AR, Kieffer T, Brennan T, Lee PK, Wind-Rotolo M, Haggerty CM, Kamireddi AR, Liu Y, Lee J, Persaud D, Gallant JE, Cofrancesco J, Jr, Quinn TC, Wilke CO, Ray SC, Siliciano JD, Nettles RE, Siliciano RF. Residual human immunodeficiency virus type 1 viremia in some patients on antiretroviral therapy is dominated by a small number of invariant clones rarely found in circulating CD4+ T cells. J Virol. 2006;80:6441–57. - PMC - PubMed
    1. Bosque A, Planelles V. Induction of HIV-1 latency and reactivation in primary memory CD4+ T cells. Blood. 2009;113:58–65. - PMC - PubMed

Publication types