Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Nov:76:186-95.
doi: 10.1016/j.yjmcc.2014.09.004. Epub 2014 Sep 18.

Physiological cardiac hypertrophy: critical role of AKT in the prevention of NHE-1 hyperactivity

Affiliations

Physiological cardiac hypertrophy: critical role of AKT in the prevention of NHE-1 hyperactivity

Alejandra M Yeves et al. J Mol Cell Cardiol. 2014 Nov.

Abstract

Background: The involvement of NHE-1 hyperactivity, critical for pathological cardiac hypertrophy (CH), in physiological CH has not been elucidated yet. Stimulation of NHE-1 increases intracellular Na(+) and Ca(2+) favouring calcineurin activation. Since myocardial stretch, an activator of NHE-1, is common to both types of CH, we speculate that NHE-1 hyperactivity may also happen in physiological CH. However, calcineurin activation is characteristic only for pathological hypertrophy. We hypothesize that an inhibitory AKT-dependent mechanism prevents NHE-1 hyperactivity in the setup of physiological CH.

Methods: Physiological CH was induced in rats by swimming (90 min/day, 12 weeks) or in cultured isolated cardiomyocytes with IGF-1 (10 nmol/L).

Results: Training induced eccentric CH development (left ventricular weight/tibial length: 22.0±0.3 vs. 24.3±0.7 mg/mm; myocyte cross sectional area: 100±3.2 vs. 117±4.1 %; sedentary (Sed) and swim-trained (Swim) respectively; p<0.05] with decreased myocardial stiffness and collagen deposition [1.7±0.05 % (Sed) vs. 1.4±0.09 % (Swim); p<0.05]. Increased phosphorylation of AKT, ERK1/2, p90(RSK) and NHE-1 at the consensus site for ERK1/2-p90(RSK) were detected in the hypertrophied hearts (P-AKT: 134±10 vs. 100±5; P-ERK1/2: 164±17 vs. 100±18; P-p90(RSK): 160±18 vs. 100±9; P-NHE-1 134±10 vs. 100±10; % in Swim vs. Sed respectively; p<0.05). No significant changes were detected neither in calcineurin activation [calcineurin Aβ 100±10 (Sed) vs. 96±12 (Swim)], nor NFAT nuclear translocation [100±3.11 (Sed) vs. 95±9.81 % (Swim)] nor NHE-1 expression [100±8.5 (Sed) vs. 95±6.7 % (Swim)]. Interestingly, the inhibitory phosphorylation of the NHE-1 consensus site for AKT was increased in the hypertrophied myocardium (151.6±19.4 (Swim) vs. 100±9.5 % (Sed); p<0.05). In isolated cardiomyocytes 24 hours IGF-1 increased cell area (114±1.3 %; p<0.05) and protein/DNA content (115±3.9 %, p<0.05), effects not abolished by NHE-1 inhibition with cariporide (114±3 and 117±4.4 %, respectively). IGF-1 significantly decreased NHE-1 activity during pHi recovery from sustained intracellular acidosis (JH+ at pHi 6.8: 4.08±0.74 and 9.09±1.21 mmol/L/min, IGF-1 vs. control; p<0.05), and abolished myocardial slow force response, the mechanical counterpart of stretch-induced NHE-1 activation.

Conclusions: NHE-1 hyperactivity seems not to be involved in physiological CH development, contrary to what characterizes pathological CH. We propose that AKT, through an inhibitory phosphorylation of the NHE-1, prevents its stretch-induced activation. This posttranslational modification emerges as an adaptive mechanism that avoids NHE-1 hyperactivity preserving its housekeeping functioning.

Keywords: AKT; Exercise training; IGF-1; NHE-1; Physiological cardiac hypertrophy.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources