Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Feb 25:137:569-80.
doi: 10.1016/j.saa.2014.08.112. Epub 2014 Sep 4.

Vibrational spectroscopic and molecular docking study of 2-Benzylsulfanyl-4-[(4-methylphenyl)-sulfanyl]-6-pentylpyrimidine-5-carbonitrile, a potential chemotherapeutic agent

Affiliations

Vibrational spectroscopic and molecular docking study of 2-Benzylsulfanyl-4-[(4-methylphenyl)-sulfanyl]-6-pentylpyrimidine-5-carbonitrile, a potential chemotherapeutic agent

Nadia G Haress et al. Spectrochim Acta A Mol Biomol Spectrosc. .

Abstract

FT-IR and FT-Raman spectra of 2-Benzylsulfanyl-4-[(4-methylphenyl)-sulfanyl]-6-pentylpyrimidine-5-carbonitrile were recorded and analyzed. The structure of the molecule has been optimized and the structural characteristics have been determined by density functional theory. The geometrical parameters (DFT) are in agreement with the XRD results. HOMO and LUMO and other chemical properties are reported. Nonlinear optical properties are reported. A detailed molecular picture of the title compound and its interactions were obtained from NBO analysis. The negative (red and yellow) regions of the MEP are related to electrophilic reactivity and the positive (blue) regions to nucleophilic reactivity, as shown in the MEP plot and the title compound has several possible sites, CN, N atom of pyrimidine ring and sulfur atoms for electrophilic attack. From the molecular docking studies it is clear that the title compound binds at the catalytic site of the substrate by weak non-covalent interactions most prominent of which are H-bonding, π-π, alkyl-π, and amide-π interactions.

Keywords: DFT; Hyperpolarizability; Molecular docking; Pyrimidine; Sulfanyl.

PubMed Disclaimer

Publication types

LinkOut - more resources