Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jun;24(6):2065-71.
doi: 10.1007/s00167-014-3336-3. Epub 2014 Sep 24.

Arthroscopic image distortion-part I: the effect of lens and viewing angles in a 2-dimensional in vitro model

Affiliations

Arthroscopic image distortion-part I: the effect of lens and viewing angles in a 2-dimensional in vitro model

Yuichi Hoshino et al. Knee Surg Sports Traumatol Arthrosc. 2016 Jun.

Abstract

Purpose: Arthroscopic images are subject to distortion, which may increase when using arthroscope lenses with greater reflecting angles and/or viewing structures at oblique angles. The purpose of this study was to determine the magnitude of image distortion experienced when using arthroscopes with different lens angles and when the line-of-sight (i.e., viewing angle) is not directly perpendicular to the target.

Methods: A dot calibration target was captured through 0°, 30°, and 70° arthroscopes from straight (i.e., directly perpendicular) and 30° oblique viewing angles. Distortions in horizontal and vertical distances in deep (located at 87.5 % length of arthroscopic image diameter) or shallow (12.5 % diameter length) regions were calculated, from which a deformity ratio (horizontal/vertical distance) was determined.

Results: From the straight viewing angle (0°), both horizontal and vertical distances were artificially reduced (i.e., <100 % magnification) in the shallow and deep regions. The deformity ratio was ~100 % in the central region, declining to ~80 % peripherally. From the oblique viewing angle (30°), magnification was below 100 % in the deep area but exceeded 100 % in the shallow area, with increasing distortion associated with increasing lens angle (0° < 30° < 70°). For all lens angles, the deformity ratio was ~50 % in the deep area but neared 100 % in the shallow region.

Conclusions: Arthroscopic image distortion in peripheral regions should be considered when using angled-lens arthroscopes, especially when the viewing angle is not straight. As viewing the femoral ACL footprint through the anterolateral portal involves using an oblique viewing angle, visualization through the anteromedial portal is recommended.

Keywords: ACL reconstruction; Knee arthroscopy; Surgical technique; Visualization.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Arthroscopy. 2003 Nov;19(9):931-5 - PubMed
    1. Knee Surg Sports Traumatol Arthrosc. 1997;5(3):138-44 - PubMed
    1. IEEE Trans Med Imaging. 2002 Dec;21(12):1524-35 - PubMed
    1. Arthroscopy. 2009 Oct;25(10):1128-38 - PubMed
    1. Knee Surg Sports Traumatol Arthrosc. 2009 Sep;17(9):1052-60 - PubMed

LinkOut - more resources