The structure and regulation of flagella in Bacillus subtilis
- PMID: 25251856
- PMCID: PMC4869327
- DOI: 10.1146/annurev-genet-120213-092406
The structure and regulation of flagella in Bacillus subtilis
Abstract
Bacterial flagellar motility is among the most extensively studied physiological systems in biology, but most research has been restricted to using the highly similar Gram-negative species Escherichia coli and Salmonella enterica. Here, we review the recent advances in the study of flagellar structure and regulation of the distantly related and genetically tractable Gram-positive bacterium Bacillus subtilis. B. subtilis has a thicker layer of peptidoglycan and lacks the outer membrane of the Gram-negative bacteria; thus, not only phylogenetic separation but also differences in fundamental cell architecture contribute to deviations in flagellar structure and regulation. We speculate that a large number of flagella and the absence of a periplasm make B. subtilis a premier organism for the study of the earliest events in flagellar morphogenesis and the type III secretion system. Furthermore, B. subtilis has been instrumental in the study of heterogeneous gene transcription in subpopulations and of flagellar regulation at the translational and functional level.
Keywords: Bacillus; bistability; flagella; homeostasis; motility.
Figures
References
-
- Babitzke P, Romeo T. CsrB sRNA family: sequestration of RNA-binding regulatory proteins. Curr Opin Microbiol. 2007;10:156–63. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
