Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Oct 9;514(7521):213-7.
doi: 10.1038/nature13731. Epub 2014 Sep 24.

Global covariation of carbon turnover times with climate in terrestrial ecosystems

Affiliations
Free article

Global covariation of carbon turnover times with climate in terrestrial ecosystems

Nuno Carvalhais et al. Nature. .
Free article

Abstract

The response of the terrestrial carbon cycle to climate change is among the largest uncertainties affecting future climate change projections. The feedback between the terrestrial carbon cycle and climate is partly determined by changes in the turnover time of carbon in land ecosystems, which in turn is an ecosystem property that emerges from the interplay between climate, soil and vegetation type. Here we present a global, spatially explicit and observation-based assessment of whole-ecosystem carbon turnover times that combines new estimates of vegetation and soil organic carbon stocks and fluxes. We find that the overall mean global carbon turnover time is 23(+7)(-4) years (95 per cent confidence interval). On average, carbon resides in the vegetation and soil near the Equator for a shorter time than at latitudes north of 75° north (mean turnover times of 15 and 255 years, respectively). We identify a clear dependence of the turnover time on temperature, as expected from our present understanding of temperature controls on ecosystem dynamics. Surprisingly, our analysis also reveals a similarly strong association between turnover time and precipitation. Moreover, we find that the ecosystem carbon turnover times simulated by state-of-the-art coupled climate/carbon-cycle models vary widely and that numerical simulations, on average, tend to underestimate the global carbon turnover time by 36 per cent. The models show stronger spatial relationships with temperature than do observation-based estimates, but generally do not reproduce the strong relationships with precipitation and predict faster carbon turnover in many semi-arid regions. Our findings suggest that future climate/carbon-cycle feedbacks may depend more strongly on changes in the hydrological cycle than is expected at present and is considered in Earth system models.

PubMed Disclaimer

References

    1. Proc Natl Acad Sci U S A. 2011 Jun 14;108(24):9899-904 - PubMed
    1. Nature. 2010 Mar 25;464(7288):579-82 - PubMed
    1. Science. 2010 Aug 13;329(5993):834-8 - PubMed
    1. Glob Chang Biol. 2013 Jul;19(7):2104-16 - PubMed
    1. New Phytol. 2012 Oct;196(1):49-67 - PubMed

Publication types