Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Sep 25;9(9):e108680.
doi: 10.1371/journal.pone.0108680. eCollection 2014.

Oligomerisation of C. elegans olfactory receptors, ODR-10 and STR-112, in yeast

Affiliations

Oligomerisation of C. elegans olfactory receptors, ODR-10 and STR-112, in yeast

Muhammad Tehseen et al. PLoS One. .

Abstract

It is widely accepted that vertebrate G-Protein Coupled Receptors (GPCRs) associate with each other as homo- or hetero-dimers or higher-order oligomers. The C. elegans genome encodes hundreds of olfactory GPCRs, which may be expressed in fewer than a dozen chemosensory neurons, suggesting an opportunity for oligomerisation. Here we show, using three independent lines of evidence: co-immunoprecipitation, bioluminescence resonance energy transfer and a yeast two-hybrid assay that nematode olfactory receptors (ORs) oligomerise when heterologously expressed in yeast. Specifically, the nematode receptor ODR-10 is able to homo-oligomerise and can also form heteromers with the related nematode receptor STR-112. ODR-10 also oligomerised with the rat I7 OR but did not oligomerise with the human somatostatin receptor 5, a neuropeptide receptor. In this study, the question of functional relevance was not addressed and remains to be investigated.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Yeast cells expressing ODR-10-GFP2.
Arrows indicate the plasma membrane and cytoplasmic localisation. Bar: 11.9 µm. Image was obtained with a Leica SP2 confocal laser scanning microscope using excitation at 488 nm.
Figure 2
Figure 2. Three lines of evidence for formation of ODR-10 homo-oligomers.
A. Co-immunoprecipitation of a pair of tagged chemoreceptor subunits. B. ODR-10-Rluc co-expressed with SSTR5-GFP2 as a negative control. Following membrane extraction with digitonin and immunoprecipitation with an anti-GFP2 antibody, as described in Materials and Methods, luciferase activity was measured using 5 µM Coelenterazine H with an emission filter of 475±30 nm. Values represent means ± SD of experiments performed on three independent transformants (**denotes significance at P≤0.001), “b” is significantly different from “a”. C. BRET2 ratios measured to test for homo-dimerisation of ODR-10 in intact yeast cells. Values represent means ± SD (n = 3) (**denotes significance at P≤0.001), “b” is significantly different from “a”. Indicated constructs in both A and C were expressed separately, or mixed (+), or co-expressed (/). D. ODR-10 homo-oligomerises in the split-ubiquitin yeast two-hybrid system. The C-terminal half of ubiquitin (Cub) was fused to the C-terminus of the full-length cDNA of odr-10 (ODR-10::Cub). The N-terminal half of ubiquitin (NubG) was fused to the C- termini of full-length cDNA of odr-10 (ODR-10::NubG). The interaction of ODR-10::Cub with pOST1:NubI served as a positive control to ensure the correct topology of the fusion protein. The interaction of ODR-10::Cub with the empty vector (pPR3-STE) served as a negative control. Yeast transformants containing both a Cub fusion and a NubG fusion construct were grown on drop out media (SD -Leu and -Trp) (Figure S2A) and selective medium lacking histidine (SD -Leu, -Trp and -His) containing 35 mM 3-Amino-1, 2, 4-triazole (3-AT). β-galactosidase assays were performed to verify interactions. Cells were spotted as one-tenth dilutions starting at Abs600nm = 1. E. ODR-10 does not hetero-oligomerise with SSTR5 in the split-ubiquitin yeast two-hybrid system. Growth and β-galactosidase activity of yeast cells expressing ODR-10:Cub and SSTR5:NubG fusions. The interaction of SSTR5::NubG with the empty vector (pBT3-STE) served as a negative control. Yeast transformants containing both a Cub fusion and a NubG fusion constructs were grown on drop out media (SD -Leu and -Trp) (Figure S2E) and selective medium lacking histidine (SD -Leu, -Trp and -His) containing 35 mM 3-Amino-1, 2, 4-triazole (3-AT). β-Galactosidase assays were performed to verify interactions. Cells were spotted as one-tenth dilutions starting at Abs600nm = 1.
Figure 3
Figure 3. Constructs used for split-ubiquitin assays.
A. Bait fusion proteins were made with the C-terminus of ubiquitin (Cub) linked to the synthetic transcription factor LexA-VP16 at the C-termini of ODR-10, STR-112 and I7 in the pBT3-STE plasmid. The STE2 sequence improves translation of protein constructs. B. Prey protein fusions were constructed with the mutant N-terminal part of ubiquitin (NubG) at the C termini of the SSTR5, STR-112, ODR-10 and I7. If bait and prey interact, NubG and Cub are brought into close proximity, resulting in the reconstitution of functional ubiquitin and release of the LexA-VP16 transcriptional factor, which leads to transcriptional readout, resulting in growth of host yeast cells on the selective medium (SD-L-T-H) or color development in a β-galactosidase assay.
Figure 4
Figure 4. ODR-10 hetero-oligomerises with STR-112 in the split-ubiquitin yeast two-hybrid system.
Growth and β-Galactosidase activity of yeast cells expressing various combinations of Cub and NubG fusions. The control plasmids were pPR3-STE and pBT3-STE. Yeast transformants containing both Cub fusion and NubG fusion constructs were grown on drop out media (SD -Leu and -Trp) (Figure S2B) and selective medium lacking histidine (SD -Leu, -Trp and -His) containing 35 mM 3-Amino-1, 2, 4-triazole (3-AT). β-galactosidase assays were performed to verify interactions. Cells were spotted as one-tenth dilutions starting at Abs600nm = 1.
Figure 5
Figure 5. ODR-10 hetero-oligomerises with I7.
A. Co-immunoprecipitation of pairs of tagged chemoreceptor subunits. Values represent means ± SD of experiments performed in triplicate with three independent transformants for each condition (**denotes significance at P≤0.001), “b” is significantly different from “a”. B. BRET2 ratios measured to test for hetero-dimerisation of ODR-10 and I7 in intact yeast cells. Values represent means ± SD (n = 3) (**denotes significance at P≤0.002), “b” is significantly different from “a”. Indicated constructs in both A and B were expressed separately, or mixed (+), or co-expressed (/). C. ODR-10 hetero-oligomerises with I7 in the split-ubiquitin yeast two-hybrid system. Growth and β-galactosidase activity of yeast cells expressing ODR-10:Cub and I7:NubG fusions. Yeast transformants containing both Cub fusion and NubG fusion constructs were grown on drop out media (SD -Leu and -Trp) (Figure S2C) and selective medium lacking histidine (SD -Leu, -Trp and -His) containing 35 mM 3-Amino-1, 2, 4-triazole (3-AT). β-galactosidase assays were performed to verify interactions. Cells were spotted as one-tenth dilutions starting at Abs600nm = 1.
Figure 6
Figure 6. I7 forms homo-oligomers.
A. Co-immunoprecipitation of a pair of tagged chemoreceptor subunits. Values represent means ± SD of experiments performed in triplicate with three independent transformants for each condition (**denotes significance at P≤0.001), “b” is significantly different from “a”. B. BRET2 ratios measured to test for homo-oligomerisation of I7 in intact yeast cells. Values represent means ± SD of experiments performed in triplicate with three independent transformants for each condition. (*denotes significance at P≤0.01). Indicated constructs in both A and B were expressed separately, or mixed (+), or co-expressed (/). C. I7 homo-oligomerises in the split-ubiquitin yeast two-hybrid system. Growth and β-galactosidase activity of yeast cells expressing I7:Cub and I7:NubG fusions. The interaction of I7::Cub with the empty vector (pPR3-STE) served as a negative control. Yeast transformants containing both a Cub fusion and a NubG fusion constructs were grown on drop out media (SD -Leu and -Trp) (Figure S2D) and selective medium lacking histidine (SD -Leu, -Trp and -His) containing 35 mM 3-Amino-1,2,4-triazole (3-AT). β-galactosidase assays were performed to verify interactions. Cells were spotted as one-tenth dilutions starting at Abs600nm = 1.

References

    1. Gurevich VV, Gurevich EV (2008) How and why do GPCRs dimerize? Trends in Pharmacological Sciences 29: 234–240. - PMC - PubMed
    1. Marinissen MJ, Gutkind JS (2001) G-protein coupled receptors and signaling networks: emerging paradigms. Trends in Pharmacological Sciences 22: 368–376. - PubMed
    1. Jordan BA, Trapaidze N, Gomes I, Nivarthi R, Devi LA (2001) Oligomerisation of opioid receptors with beta 2-adrenergic receptors: a role in trafficking and mitogen-activated protein kinase activation. Proc Natl Acad Sci USA 98: 343–348. - PMC - PubMed
    1. George SR, O’Dowd BF, Lee SP (2002) G-protein coupled receptor oligomerisation and its potential for drug discovery. Nat Rev Drug Discov 1: 808–820. - PubMed
    1. Kroeger KM, Pfleger KD, Eidne KA (2003) G-protein coupled receptor oligomerisation in neuroendocrine pathways. Front Neuroendocrinol 24: 254–278. - PubMed

Publication types

MeSH terms

Substances

LinkOut - more resources