Physiology of the fuel ethanol strain Saccharomyces cerevisiae PE-2 at low pH indicates a context-dependent performance relevant for industrial applications
- PMID: 25263709
- DOI: 10.1111/1567-1364.12217
Physiology of the fuel ethanol strain Saccharomyces cerevisiae PE-2 at low pH indicates a context-dependent performance relevant for industrial applications
Abstract
Selected Saccharomyces cerevisiae strains are used in Brazil to produce the hitherto most energetically efficient first-generation fuel ethanol. Although genome and some transcriptome data are available for some of these strains, quantitative physiological data are lacking. This study investigates the physiology of S. cerevisiae strain PE-2, widely used in the Brazilian fuel ethanol industry, in comparison with CEN.PK113-7D, a reference laboratory strain, focusing on tolerance to low pH and acetic acid stress. Both strains were grown in anaerobic bioreactors, operated as batch, chemostat or dynamic continuous cultures. Despite their different backgrounds, biomass and product formation by the two strains were similar under a range of conditions (pH 5 or pH < 3, with or without 105 mM acetic acid added). PE-2 displayed a remarkably higher fitness than CEN.PK113-7D during batch cultivation on complex Yeast extract - Peptone - Dextrose medium at low pH (2.7). Kinetics of viability loss of non-growing cells, incubated at pH 1.5, indicated a superior survival of glucose-depleted PE-2 cells, when compared with either CEN.PK113-7D or a commercial bakers' strain. These results indicate that the sulfuric acid washing step, used in the fuel ethanol industry to decrease bacterial contamination due to non-aseptic operation, might have exerted an important selective pressure on the microbial populations present in such environments.
Keywords: Saccharomyces cerevisiae; acid stress; fuel ethanol; industrial fermentation; low pH tolerance.
© 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Similar articles
-
Stress tolerance and growth physiology of yeast strains from the Brazilian fuel ethanol industry.Antonie Van Leeuwenhoek. 2013 Dec;104(6):1083-95. doi: 10.1007/s10482-013-0030-2. Epub 2013 Sep 24. Antonie Van Leeuwenhoek. 2013. PMID: 24062068
-
A simple scaled down system to mimic the industrial production of first generation fuel ethanol in Brazil.Antonie Van Leeuwenhoek. 2017 Jul;110(7):971-983. doi: 10.1007/s10482-017-0868-9. Epub 2017 May 3. Antonie Van Leeuwenhoek. 2017. PMID: 28470565
-
Robust industrial Saccharomyces cerevisiae strains for very high gravity bio-ethanol fermentations.J Biosci Bioeng. 2011 Aug;112(2):130-6. doi: 10.1016/j.jbiosc.2011.03.022. Epub 2011 May 2. J Biosci Bioeng. 2011. PMID: 21543257
-
What do we know about the yeast strains from the Brazilian fuel ethanol industry?Appl Microbiol Biotechnol. 2013 Feb;97(3):979-91. doi: 10.1007/s00253-012-4631-x. Epub 2012 Dec 28. Appl Microbiol Biotechnol. 2013. PMID: 23271669 Review.
-
Anaerobiosis revisited: growth of Saccharomyces cerevisiae under extremely low oxygen availability.Appl Microbiol Biotechnol. 2018 Mar;102(5):2101-2116. doi: 10.1007/s00253-017-8732-4. Epub 2018 Feb 3. Appl Microbiol Biotechnol. 2018. PMID: 29397429 Review.
Cited by
-
Xylo-Oligosaccharide Utilization by Engineered Saccharomyces cerevisiae to Produce Ethanol.Front Bioeng Biotechnol. 2022 Feb 15;10:825981. doi: 10.3389/fbioe.2022.825981. eCollection 2022. Front Bioeng Biotechnol. 2022. PMID: 35242749 Free PMC article. Review.
-
Elimination of sucrose transport and hydrolysis in Saccharomyces cerevisiae: a platform strain for engineering sucrose metabolism.FEMS Yeast Res. 2017 Jan 1;17(1):fox006. doi: 10.1093/femsyr/fox006. FEMS Yeast Res. 2017. PMID: 28087672 Free PMC article.
-
Bioethanol strains of Saccharomyces cerevisiae characterised by microsatellite and stress resistance.Braz J Microbiol. 2017 Apr-Jun;48(2):268-274. doi: 10.1016/j.bjm.2016.09.017. Epub 2016 Dec 22. Braz J Microbiol. 2017. PMID: 28057426 Free PMC article.
-
Adaptation to low pH and lignocellulosic inhibitors resulting in ethanolic fermentation and growth of Saccharomyces cerevisiae.AMB Express. 2016 Dec;6(1):59. doi: 10.1186/s13568-016-0234-8. Epub 2016 Aug 26. AMB Express. 2016. PMID: 27566648 Free PMC article.
-
Sequential process of solid-state cultivation with fungal consortium and ethanol fermentation by Saccharomyces cerevisiae from sugarcane bagasse.Bioprocess Biosyst Eng. 2021 Oct;44(10):1-8. doi: 10.1007/s00449-021-02588-6. Epub 2021 May 20. Bioprocess Biosyst Eng. 2021. PMID: 34018026
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases