Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Dec 11;118(49):14148-56.
doi: 10.1021/jp506506p. Epub 2014 Oct 10.

Using hydrogen-deuterium exchange to monitor protein structure in the presence of gold nanoparticles

Affiliations

Using hydrogen-deuterium exchange to monitor protein structure in the presence of gold nanoparticles

Ailin Wang et al. J Phys Chem B. .

Abstract

The potential applications of protein-functionalized gold nanoparticles (AuNPs) have motivated many studies characterizing protein-AuNP interactions. However, the lack of detailed structural information has hindered our ability to understand the mechanism of protein adsorption on AuNPs. In order to determine the structural perturbations that occur during adsorption, hydrogen/deuterium exchange (HDX) of amide protons was measured for two proteins by NMR. Specifically, we measured both slow (5-300 min) and fast (10-500 ms) H/D exchange rates for GB3 and ubiquitin, two well-characterized proteins. Overall, amide exchange rates are very similar in the presence and absence of AuNPs, supporting a model where the adsorbed protein remains largely folded on the AuNP surface. Small differences in exchange rates are observed for several loop residues, suggesting that the secondary structure remains relatively rigid while loops and surface residues can experience perturbations upon binding. Strikingly, several of these residues are close to lysines, which supports a model where positive surface residues may interact favorably with AuNP-bound citrate. Because these proteins appear to remain folded on AuNP surfaces, these studies suggest that it may be possible to engineer functional AuNP-based nanoconjugates without the use of chemical linkers.

PubMed Disclaimer

Publication types

LinkOut - more resources