Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Sep 30;12(9):e1001960.
doi: 10.1371/journal.pbio.1001960. eCollection 2014 Sep.

Social network analysis shows direct evidence for social transmission of tool use in wild chimpanzees

Affiliations

Social network analysis shows direct evidence for social transmission of tool use in wild chimpanzees

Catherine Hobaiter et al. PLoS Biol. .

Abstract

Social network analysis methods have made it possible to test whether novel behaviors in animals spread through individual or social learning. To date, however, social network analysis of wild populations has been limited to static models that cannot precisely reflect the dynamics of learning, for instance, the impact of multiple observations across time. Here, we present a novel dynamic version of network analysis that is capable of capturing temporal aspects of acquisition--that is, how successive observations by an individual influence its acquisition of the novel behavior. We apply this model to studying the spread of two novel tool-use variants, "moss-sponging" and "leaf-sponge re-use," in the Sonso chimpanzee community of Budongo Forest, Uganda. Chimpanzees are widely considered the most "cultural" of all animal species, with 39 behaviors suspected as socially acquired, most of them in the domain of tool-use. The cultural hypothesis is supported by experimental data from captive chimpanzees and a range of observational data. However, for wild groups, there is still no direct experimental evidence for social learning, nor has there been any direct observation of social diffusion of behavioral innovations. Here, we tested both a static and a dynamic network model and found strong evidence that diffusion patterns of moss-sponging, but not leaf-sponge re-use, were significantly better explained by social than individual learning. The most conservative estimate of social transmission accounted for 85% of observed events, with an estimated 15-fold increase in learning rate for each time a novice observed an informed individual moss-sponging. We conclude that group-specific behavioral variants in wild chimpanzees can be socially learned, adding to the evidence that this prerequisite for culture originated in a common ancestor of great apes and humans, long before the advent of modern humans.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Visualization of the static interaction networks for the moss-sponging behavior for all 30 individuals.
Graphs are laid out using the Fruchterman–Reingold weighted algorithm. Labels on the nodes indicate the identity of individuals (see Supporting Information). Individuals with large label size developed the behavior, whereas individuals with small label size did not. Numbers under the large label indicate the order of acquisition of the behavior. The width of the arrows linking individuals is proportional to the number of times an interaction event was recorded between any two individuals and represented according to the convention “X→Y” means that Y was observed by X. Dashed line indicates potential product-based social learning by individual KW who re-used a moss-sponge. Data were deposited in the Dryad repository: http://dx.doi.org/10.5061/dryad.m6s21.
Figure 2
Figure 2. Visualization of the static interaction networks for the RU1 behavior for all 30 individuals.
Graphs are laid out using the Fruchterman–Reingold weighted algorithm. Labels on the nodes indicate the identity of individuals (see Supporting Information). Individuals with large label size developed the behavior, whereas individuals with small label size did not. Numbers under the large label indicate the order of acquisition of the behavior. The width of the arrows linking individuals is proportional to the number of times an interaction event was recorded between any two individuals and represented according to the convention “X→Y” means that Y was observed by X. Data were deposited in the Dryad repository: http://dx.doi.org/10.5061/dryad.m6s21.

Comment in

References

    1. Franz M, Nunn CL (2009) Network-based diffusion analysis: A new method for detecting social learning. Proc Biol Sci 276: 1829–1836. - PMC - PubMed
    1. Hoppitt W, Boogert NJ, Laland KN (2010) Detecting social transmission in networks. J Theor Biol 263: 544–555. - PubMed
    1. Dufour V, Sueur C, Whiten A, Buchanan-Smith HM (2011) The impact of moving to a novel environment on social networks, activity and wellbeing in two new world primates. Am J Primatol 73: 802–811. - PubMed
    1. Pinter-Wollman N, Hobson EA, Smith JE, Edelman AJ, Shizuka D, et al. (2013) The dynamics of animal social networks: analytical, conceptual, and theoretical advances. Behav Ecol 25 (2) 242–255.
    1. Wey T, Blumstein DT, Shen W, Jordán F (2008) Social network analysis of animal behaviour: a promising tool for the study of sociality. Anim Behav 75: 333–344.

Publication types