Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Dec;104(6 Pt A):412-6.
doi: 10.1016/j.ygeno.2014.09.011. Epub 2014 Sep 28.

The spectrum of adaptive mutations in experimental evolution

Affiliations
Review

The spectrum of adaptive mutations in experimental evolution

Gregory I Lang et al. Genomics. 2014 Dec.

Abstract

A primary goal of recent work in experimental evolution is to probe the molecular basis of adaptation. This requires an understanding of the individual mutations in evolving populations: their identity, their physiological and fitness effects, and the interactions between them. The combination of high-throughput methods for laboratory evolution and next-generation sequencing methods now makes it possible to identify and quantify mutations in hundreds of replicate populations over thousands of generations, and to directly measure fitness effects and epistatic interactions. Many laboratories are now leveraging these tools to study the molecular basis of adaptation and the reproducibility of evolutionary outcomes across a variety of model systems. Genetic analyses on evolved populations are shedding light on the statistics of epistasis between evolved mutations. Here we review the current understanding of the spectrum of mutations observed across these systems, with a focus on epistatic interactions between beneficial mutations and constraints on evolutionary outcomes. We emphasize evolution in asexual microbes, where next generation sequencing methods have been widely applied.

Keywords: Adaptive mutations; Experimental evolution; Next-generation sequencing.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Atwood KC, Schneider LK, Ryan FJ. Periodic selection in Escherichia coli. Proc Natl Acad Sci U S A. 1951;37:146–155. - PMC - PubMed
    1. Barrick JE, Kauth MR, Strelioff CC, Lenski RE. Escherichia coli rpoB mutants have increased evolvability in proportion to their fitness defects. Mol Biol Evol. 2010;27:1338–1347. - PMC - PubMed
    1. Barrick JE, Lenski RE. Genome-wide mutational diversity in an evolving population of Escherichia coli. Cold Spring Harb Symp Quant Biol. 2009;74:119–129. - PMC - PubMed
    1. Barrick JE, Yu DS, Yoon SH, Jeong H, Oh TK, et al. Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature. 2009;461:1243–1247. - PubMed
    1. Bennett AF, Lenski RE. An experimental test of evolutionary trade-offs during temperature adaptation. Proc Natl Acad Sci U S A 104 Suppl. 2007;1:8649–8654. - PMC - PubMed

LinkOut - more resources