Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Dec 10:1592:65-72.
doi: 10.1016/j.brainres.2014.09.055. Epub 2014 Oct 2.

MicroRNA-23a-3p attenuates oxidative stress injury in a mouse model of focal cerebral ischemia-reperfusion

Affiliations

MicroRNA-23a-3p attenuates oxidative stress injury in a mouse model of focal cerebral ischemia-reperfusion

Haiping Zhao et al. Brain Res. .

Abstract

The present study was designed to investigate the potential role of miR-23a-3p in experimental brain ischemia-reperfusion injury. Cerebral ischemia reperfusion was induced by transient middle cerebral artery occlusion (MCAO) for 1h in C57/BL6 mice. And miR-23a-3p angomir was transfected to upregulate the miR-23a-3p level. Our results showed that miR-23a-3p levels were transiently increased at 4h after reperfusion in the peri-infarction area, while markedly increased in the infarction core at reperfusion 4h and 24h. Importantly, in vivo study demonstrated that miR-23a-3p angomir treatment through intracerebroventricular injection markedly decreased cerebral infarction volume after MCAO. Simultaneously, miR-23a-3p reduced peroxidative production nitric oxide (NO) and 3-nitrotyrosine (3-NT), and increased the expression of manganese superoxide dismutase (MnSOD). In vitro study demonstrated that miR-23a-3p decreased hydrogen peroxide (H2O2)-induced lactate dehydrogenase (LDH) leakage dose-dependently, and reduced protein levels of activated caspase-3 in neuro-2a cells. In addition, miR-23a-3p reduced H2O2-induced production of NO and 3-NT dose-dependently, and reversed the decreased activity of total SOD and MnSOD in neuro-2a cells. Our study indicated that miR-23a-3p suppressed oxidative stress and lessened cerebral ischemia-reperfusion injury.

Keywords: Cerebral ischemia; MiR-23a-3p; Nitric oxide; Oxidative stress; Reperfusion.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources