Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes
- PMID: 2528146
- PMCID: PMC297905
- DOI: 10.1073/pnas.86.17.6661
Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes
Abstract
Active transport across the vacuolar components of the eukaryotic endomembrane system is energized by a specific vacuolar H+-ATPase. The amino acid sequences of the 70- and 60-kDa subunits of the vacuolar H+-ATPase are approximately equal to 25% identical to the beta and alpha subunits, respectively, of the eubacterial-type F0F1-ATPases. We now report that the same vacuolar H+-ATPase subunits are approximately equal to 50% identical to the alpha and beta subunits, respectively, of the sulfur-metabolizing Sulfolobus acidocaldarius, an archaebacterium (Archaeobacterium). Moreover, the homologue of an 88-amino acid stretch near the amino-terminal end of the 70-kDa subunit is absent from the F0F1-ATPase beta subunit but is present in the alpha subunit of Sulfolobus. Since the two types of subunits (alpha and beta subunits; 60- and 70-kDa subunits) are homologous to each other, they must have arisen by a gene duplication that occurred prior to the last common ancestor of the eubacteria, eukaryotes, and Sulfolobus. Thus, the phylogenetic tree of the subunits can be rooted at the site where the gene duplication occurred. The inferred evolutionary tree contains two main branches: a eubacterial branch and an eocyte branch that gave rise to Sulfolobus and the eukaryotic host cell. The implication is that the vacuolar H+-ATPase of eukaryotes arose by the internalization of the plasma membrane H+-ATPase of an archaebacterial-like ancestral cell.
Similar articles
-
Molecular cloning of the beta-subunit of a possible non-F0F1 type ATP synthase from the acidothermophilic archaebacterium, Sulfolobus acidocaldarius.J Biol Chem. 1988 Nov 25;263(33):17251-4. J Biol Chem. 1988. PMID: 2903160
-
Molecular evolution of H+-ATPases. I. Methanococcus and Sulfolobus are monophyletic with respect to eukaryotes and Eubacteria.Z Naturforsch C J Biosci. 1989 Jul-Aug;44(7-8):641-50. doi: 10.1515/znc-1989-7-816. Z Naturforsch C J Biosci. 1989. PMID: 2528356
-
Archaebacterial ATPases: relationship to other ion-translocating ATPase families examined in terms of immunological cross-reactivity.J Biochem. 1990 Oct;108(4):554-9. doi: 10.1093/oxfordjournals.jbchem.a123241. J Biochem. 1990. PMID: 1963431
-
Evolution of structure and function of V-ATPases.J Bioenerg Biomembr. 1992 Aug;24(4):415-24. doi: 10.1007/BF00762534. J Bioenerg Biomembr. 1992. PMID: 1400286 Review.
-
The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification.Int J Syst Evol Microbiol. 2002 Jan;52(Pt 1):7-76. doi: 10.1099/00207713-52-1-7. Int J Syst Evol Microbiol. 2002. PMID: 11837318 Review.
Cited by
-
Challenges in Assembling the Dated Tree of Life.Genome Biol Evol. 2024 Oct 9;16(10):evae229. doi: 10.1093/gbe/evae229. Genome Biol Evol. 2024. PMID: 39475308 Free PMC article.
-
Mechanical inhibition of isolated Vo from V/A-ATPase for proton conductance.Elife. 2020 Jul 8;9:e56862. doi: 10.7554/eLife.56862. Elife. 2020. PMID: 32639230 Free PMC article.
-
Deep phylogeny, ancestral groups and the four ages of life.Philos Trans R Soc Lond B Biol Sci. 2010 Jan 12;365(1537):111-32. doi: 10.1098/rstb.2009.0161. Philos Trans R Soc Lond B Biol Sci. 2010. PMID: 20008390 Free PMC article.
-
How long did it take for life to begin and evolve to cyanobacteria?J Mol Evol. 1994 Dec;39(6):546-54. doi: 10.1007/BF00160399. J Mol Evol. 1994. PMID: 11536653
-
On the nature of global classification.Proc Natl Acad Sci U S A. 1992 Apr;89(7):2930-4. doi: 10.1073/pnas.89.7.2930. Proc Natl Acad Sci U S A. 1992. PMID: 11537862 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources