Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Dec 1;53(49):13553-7.
doi: 10.1002/anie.201407806. Epub 2014 Oct 6.

Chemoenzymatic synthesis of spinosyn A

Affiliations

Chemoenzymatic synthesis of spinosyn A

Hak Joong Kim et al. Angew Chem Int Ed Engl. .

Abstract

Following the biosynthesis of polyketide backbones by polyketide synthases (PKSs), post-PKS modifications result in a significantly elevated level of structural complexity that renders the chemical synthesis of these natural products challenging. We report herein a total synthesis of the widely used polyketide insecticide spinosyn A by exploiting the prowess of both chemical and enzymatic methods. As more polyketide biosynthetic pathways are characterized, this chemoenzymatic approach is expected to become readily adaptable to streamlining the synthesis of other complex polyketides with more elaborate post-PKS modifications.

Keywords: biosynthesis; polyketide macrolides; post-polyketide synthase modifications; spinosyns; total synthesis.

PubMed Disclaimer

Figures

Figure 1
Figure 1
(A) The organization of putative operons encoding enzymes responsible for the post-PKS modifications in the spinosyn biosynthetic gene cluster. (B) HPLC analysis of the enzymatic tandem reactions to convert 11 to 17; 11 alone (a), enzyme reaction mixture (b), and 17
Scheme 1
Scheme 1
Established biosynthetic pathway for spinosyn A (1).
Scheme 2
Scheme 2
Retrosynthetic analysis.
Scheme 3
Scheme 3
Synthesis of (A) fragment A (19) and (B) fragment B (20). Reagents and conditions: a) (−)-DBNP, Et2Zn, hexanes, 0 °C, 66%, 92% ee; b) TESOTf, 2,6-lutidine, CH2Cl2, −78 °C; c) i-Bu2AlH, toluene, −78 °C, 2 steps 78%; d) TiCl4, (−)-sparteine, CH2Cl2, 0 °C, 84%; e) TBSOTf, 2,6-lutidine, CH2Cl2, −78 °C; f) LiBH4, Et2O, CH3OH, 0 °C, 2 steps 75%; g) TPAP, NMO, 4Å MS, CH2Cl2, rt; h) (+)-Ipc2B(allyl), Et2O, −78 °C, 2 steps 60%; i) TBSOTf, 2,6-lutidine, CH2Cl2, −78 °C, 87%; j) OsO4, NMO, THF, acetone, pH 7 buffer, rt; k) NaIO4, THF, pH 7 buffer, rt; l) NaBH4, EtOH, rt, 3 steps 67%; m) PTSH, PPh3, DIAD, THF, rt, 86%; n) (NH4)6Mo7O24, H2O2, EtOH, H2O, 4 °C; o) TESOTf, 2,6-lutidine, CH2Cl2, −78 °C, 2 steps 91%; p) 1,3-dithiane, n-BuLi, THF, 0 °C, 94%; q) TBSOTf, 2,6-lutidine, CH2Cl2, −78 °C, 95%; r) MeI, CaCO3, CH3CN, H2O, reflux, quantitative; s) (+)-Ipc2B(allyl), THF, −78 °C; t) TBSOTf, 2,6-lutidine, CH2Cl2, −78 °C, 2 steps 67%; u) OsO4, NaIO4, 2,6-lutidine, dioxane, H2O, rt, 83%; v) CrCl2, HCI3, dioxane, THF, rt, 87%; w) DDQ, aq CH2Cl2, rt; x) Dess-Martin periodinane, CH2Cl2, rt, 2 steps 83%.
Scheme 4
Scheme 4
(A) Synthesis of fragment C (21) and (B) completion of preparation of 11. Reagents and conditions: a) Bu3SnH, AIBN, benzene, reflux, 50%; b) MnO2, acetone, rt, 85%; c) EtO2CCH2P(O)(OEt)2, NaH, THF, 0 °C to rt, 74%; d) KHMDS, THF, −78 °C, 82%; e) 21, Pd2(dba)3, Ph3As, DMF, rt, 70%; f) PPTS, EtOH, 0 °C; g) LiOH, THF, CH3OH, H2O, reflux, 2 steps 62%; h) 2,4,6-Cl3C6H3COCl, Et3N, THF; DMAP, toluene, rt, 75%; o) HF•pyr, EtOH, 4 °C, 4 days, 64%.

References

    1. Bauer RA, Wurst JM, Tan DS. Curr. Opin. Chem. Biol. 2010;14:308–314. - PMC - PubMed
    1. Dandapani S, Marcaurelle LA. Nat. Chem. Biol. 2010;6:861–863. - PubMed
    1. Gao X, Woo SK, Krische MJ. J. Am. Chem. Soc. 2013;135:4223–4226. - PMC - PubMed
    1. Hertweck C. Angew. Chem. Int. Ed. 2009;48:4688–4716. - PubMed
    1. Olano C, Méndez C, Salas JA. Nat. Prod. Rep. 2010;27:571–616. - PubMed

Publication types

MeSH terms

LinkOut - more resources