Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Nov 13;124(20):3130-40.
doi: 10.1182/blood-2014-04-569780. Epub 2014 Oct 6.

The TAK1-NF-κB axis as therapeutic target for AML

Affiliations
Free article

The TAK1-NF-κB axis as therapeutic target for AML

Matthieu Cornelis Johannes Bosman et al. Blood. .
Free article

Abstract

Development and maintenance of leukemia can be partially attributed to alterations in (anti)-apoptotic gene expression. Genome-wide transcriptome analyses revealed that 89 apoptosis-associated genes were differentially expressed between patient acute myeloid leukemia (AML) CD34(+) cells and normal bone marrow (NBM) CD34(+) cells. Among these, transforming growth factor-β activated kinase 1 (TAK1) was strongly upregulated in AML CD34(+) cells. Genetic downmodulation or pharmacologic inhibition of TAK1 activity strongly impaired primary AML cell survival and cobblestone formation in stromal cocultures. TAK1 inhibition was mainly due to blockade of the nuclear factor κB (NF-κB) pathway, as TAK1 inhibition resulted in reduced levels of P-IκBα and p65 activity. Overexpression of a constitutive active variant of NF-κB partially rescued TAK1-depleted cells from apoptosis. Importantly, NBM CD34(+) cells were less sensitive to TAK1 inhibition compared with AML CD34(+) cells. Knockdown of TAK1 also severely impaired leukemia development in vivo and prolonged overall survival in a humanized xenograft mouse model. In conclusion, our results indicate that TAK1 is frequently overexpressed in AML CD34(+) cells, and that TAK1 inhibition efficiently targets leukemic stem/progenitor cells in an NF-κB-dependent manner.

PubMed Disclaimer

Publication types

MeSH terms

Substances