Allopolyploidy, diversification, and the Miocene grassland expansion
- PMID: 25288748
- PMCID: PMC4210326
- DOI: 10.1073/pnas.1404177111
Allopolyploidy, diversification, and the Miocene grassland expansion
Erratum in
-
Correction to Supporting Information for Estep et al., Allopolyploidy, diversification, and the Miocene grassland expansion.Proc Natl Acad Sci U S A. 2016 Jan 12;113(2):E257. doi: 10.1073/pnas.1524364113. Epub 2015 Dec 28. Proc Natl Acad Sci U S A. 2016. PMID: 26711988 Free PMC article. No abstract available.
Abstract
The role of polyploidy, particularly allopolyploidy, in plant diversification is a subject of debate. Whole-genome duplications precede the origins of many major clades (e.g., angiosperms, Brassicaceae, Poaceae), suggesting that polyploidy drives diversification. However, theoretical arguments and empirical studies suggest that polyploid lineages may actually have lower speciation rates and higher extinction rates than diploid lineages. We focus here on the grass tribe Andropogoneae, an economically and ecologically important group of C4 species with a high frequency of polyploids. A phylogeny was constructed for ca. 10% of the species of the clade, based on sequences of four concatenated low-copy nuclear loci. Genetic allopolyploidy was documented using the characteristic pattern of double-labeled gene trees. At least 32% of the species sampled are the result of genetic allopolyploidy and result from 28 distinct tetraploidy events plus an additional six hexaploidy events. This number is a minimum, and the actual frequency could be considerably higher. The parental genomes of most Andropogoneae polyploids diverged in the Late Miocene coincident with the expansion of the major C4 grasslands that dominate the earth today. The well-documented whole-genome duplication in Zea mays ssp. mays occurred after the divergence of Zea and Sorghum. We find no evidence that polyploidization is followed by an increase in net diversification rate; nonetheless, allopolyploidy itself is a major mode of speciation.
Conflict of interest statement
The authors declare no conflict of interest.
Figures


References
-
- Schranz ME, Mohammadin S, Edger PP. Ancient whole genome duplications, novelty and diversification: The WGD Radiation Lag-Time Model. Curr Opin Plant Biol. 2012;15(2):147–153. - PubMed
-
- Edger PP, Pires JC. Gene and genome duplications: The impact of dosage-sensitivity on the fate of nuclear genes. Chromosome Res. 2009;17(5):699–717. - PubMed
-
- Jiao Y, et al. Ancestral polyploidy in seed plants and angiosperms. Nature. 2011;473(7345):97–100. - PubMed
-
- Doyle JJ, et al. Evolutionary genetics of genome merger and doubling in plants. Annu Rev Genet. 2008;42:443–461. - PubMed
-
- Soltis DE, et al. Polyploidy and angiosperm diversification. Am J Bot. 2009;96(1):336–348. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous