Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Oct 22;136(42):14726-9.
doi: 10.1021/ja508872q. Epub 2014 Oct 7.

Positive allostery in metal ion binding by a cooperatively folded β-peptide bundle

Affiliations

Positive allostery in metal ion binding by a cooperatively folded β-peptide bundle

Jonathan P Miller et al. J Am Chem Soc. .

Erratum in

Abstract

Metal ion binding is exploited by proteins in nature to catalyze reactions, bind molecules, and favor discrete structures, but it has not been demonstrated in β-peptides or their assemblies. Here we report the design, synthesis, and characterization of a β-peptide bundle that uniquely binds two Cd(II) ions in a distinct bicoordinate array. The two Cd(II) ions bind with positive allosteric cooperativity and increase the thermodynamic stability of the bundle by more than 50 °C. This system provides a unique, synthetic context to explore allosteric regulation and should pave the way to sophisticated molecular assemblies with catalytic and substrate-sensing functions that have historically not been available to de novo designed synthetic proteomimetics in water.

PubMed Disclaimer

Figures

Figure 1
Figure 1
(A) Ribbon diagram of the previously reported Zwit-YK β-peptide bundle structure determined by X-ray crystallography. The locations of the N- and C-termini of each strand are indicated by cyan and red coloring, respectively. Close-up of the potential two-coordinate Cd2+ binding site formed at the (B) parallel and (C) perpendicular helix interface in a model of the Zwit-YK-C octameric bundle. The perpendicular interface is rotated 40 degrees for clarity. (D) Primary sequence of Zwit-YK-C monomer.
Figure 2
Figure 2
Circular dichroism (CD) and sedimentation equilibrium analytical ultracentrifugation (SE-AU) analysis of β-peptide bundle formation by Zwit YK-C in TT buffer (5 mM Tris-Cl (pH 8), 1 mM TCEP). (A) Wavelength-dependent CD spectra of Zwit YK-C (25 °C) at concentrations between 1.6 and 200 μM. (B) Plot of the MRE at 210 nm as a function of [Zwit YK-C]T and fit to an ideal monomer-ocatamer equilibrium. (C) SE-AU analysis of Zwit-YK-C at 120 μM in TT buffer containing 100 mM NaCl, fit to a monomer-octamer equilibrium. (D) RMSD of the SE-AU fits as a function of n.
Figure 3
Figure 3
Plots illustrating Cd2+ binding by (A) β-YACAACA and (B–D) the Zwit YK-C β3-peptide bundle. (A) UV–vis difference spectra of β-YACAACA (200 μM) in the presence of high (200 μM) or moderate (50 μM) Cd2+, normalized to show the shift in LMCT signal. (B) UV–vis difference spectra of Zwit YK-C (100 μM) as the [Cd2+] varies between 0 and 75 μM. (C) Plot of absorbance at 245 nm of 50 μM Cd2+ as a function of added [Zwit YK-C]T showing a plateau at 4 equiv of [Zwit YK-C]T. (D) Temperature-dependent CD spectra illustrating cooperative unfolding of the Zwit YK-C bundle ([Zwit YK-C]T = 100 μM) both alone (Tm = 41.5 °C) and in the presence of 30 μM CdCl2 (Tm > 90 °C).
Figure 4
Figure 4
(A) Plot of absorbance (245 nm) of Zwit YK-C (100 μM) as a function of added [Cd2+]. A sigmoidal fit to the Hill equation is shown by the solid black curve, while a noncooperative fit is shown by the dashed curve. (B) Isothermal titration calorimetry (ITC) analysis of Cd2+ binding by the Zwit-TK-C β3-peptide bundle in 5 mM Tris, 1 mM TCEP (pH 8.1) at 25 °C. Data was fit to a one-site model in which n was an independent variable. The ITC output is shown in green; the integrated heat per injection in blue.

References

    1. Cheng R. P.; DeGrado W. F. J. Am. Chem. Soc. 2001, 123, 5162. - PubMed
    2. Arvidsson P. I.; Rueping M.; Seebach D. Chem. Comm. 2001, 649.
    3. Hart S. A.; Bahadoor A. B. F.; Matthews E. E.; Qiu X. Y. J.; Schepartz A. J. Am. Chem. Soc. 2003, 125, 4022–4023. - PubMed
    4. Kritzer J. A.; Hodsdon M. E.; Schepartz A. J. Am. Chem. Soc. 2005, 127, 4118. - PMC - PubMed
    1. Kritzer J. A.; Lear J. D.; Hodsdon M. E.; Schepartz A. J. Am. Chem. Soc. 2004, 126, 9468. - PubMed
    2. Michel J.; Harker E. A.; Tirado-Rives J.; Jorgensen W. L.; Schepartz A. J. Am. Chem. Soc. 2009, 131, 6356. - PMC - PubMed
    3. Bautista A. D.; Appelbaum J. S.; Craig C. J.; Michel J.; Schepartz A. J. Am. Chem. Soc. 2010, 132, 2904. - PMC - PubMed
    4. Denton E. V.; Craig C. J.; Pongratz R. L.; Appelbaum J. S.; Doerner A. E.; Narayanan A.; Shulman G. I.; Cline G. W.; Schepartz A. Org. Lett. 2013, 15, 5318. - PMC - PubMed
    1. Kritzer J. A.; Luedtke N. W.; Harker E. A.; Schepartz A. J. Am. Chem. Soc. 2005, 127, 14584. - PMC - PubMed
    2. Kritzer J. A.; Stephens O. M.; Guarracino D. A.; Reznik S. K.; Schepartz A. Bioorg. Med. Chem. 2005, 13, 11. - PMC - PubMed
    3. Guarracino D. A.; Chiang H. J. R.; Banks T. N.; Lear J. D.; Hodsdon M. E.; Schepartz A. Org. Lett. 2006, 8, 807. - PubMed
    4. Goodman J. L.; Molski M. A.; Qiu J.; Schepartz A. ChemBioChem 2008, 9, 1576. - PMC - PubMed
    5. Seebach D.; Gardiner J. Accts, Chem. res. 2008, 41, 1366. - PubMed
    6. Bautista A. D.; Stephens O. M.; Wang L.; Domaoal R. A.; Anderson K. S.; Schepartz A. Bioorg. Med. Chem. Lett. 2009, 19, 3736. - PMC - PubMed
    7. Harker E. A.; Daniels D. S.; Guarracino D. A.; Schepartz A. Bioorg. Med. Chem. 2009, 17, 2038. - PMC - PubMed
    8. Harker E. A.; Schepartz A. ChemBioChem 2009, 10, 990. - PMC - PubMed
    9. Wang P. S.-P.; Craig C. J.; Schepartz A. Tetrahedron 2012, 68, 4342. - PMC - PubMed
    1. Stephens O. M.; Kim S.; Welch B. D.; Hodsdon M. E.; Kay M. S.; Schepartz A. J. Am. Chem. Soc. 2005, 127, 13126. - PMC - PubMed
    2. Shandler S. J.; Korendovych I. V.; Moore D. T.; Smith-Dupont K. B.; Streu C. N.; Litvinov R. I.; Billings P. C.; Gai F.; Bennett J. S.; DeGrado W. F. J. Am. Chem. Soc. 2011, 133, 12378. - PMC - PubMed
    1. Qiu J. X.; Petersson E. J.; Matthews E. E.; Schepartz A. J. Am. Chem. Soc. 2006, 128, 11338. - PMC - PubMed

Publication types