Cancer evolution: mathematical models and computational inference
- PMID: 25293804
- PMCID: PMC4265145
- DOI: 10.1093/sysbio/syu081
Cancer evolution: mathematical models and computational inference
Abstract
Cancer is a somatic evolutionary process characterized by the accumulation of mutations, which contribute to tumor growth, clinical progression, immune escape, and drug resistance development. Evolutionary theory can be used to analyze the dynamics of tumor cell populations and to make inference about the evolutionary history of a tumor from molecular data. We review recent approaches to modeling the evolution of cancer, including population dynamics models of tumor initiation and progression, phylogenetic methods to model the evolutionary relationship between tumor subclones, and probabilistic graphical models to describe dependencies among mutations. Evolutionary modeling helps to understand how tumors arise and will also play an increasingly important prognostic role in predicting disease progression and the outcome of medical interventions, such as targeted therapy.
Keywords: Cancer; cancer progression; evolution; population genetics; probabilistic graphical models.
© The Author(s) 2014. Published by Oxford University Press on behalf of the Society of Systematic Biologists.
Figures






Similar articles
-
BAMSE: Bayesian model selection for tumor phylogeny inference among multiple samples.BMC Bioinformatics. 2019 Jun 6;20(Suppl 11):282. doi: 10.1186/s12859-019-2824-3. BMC Bioinformatics. 2019. PMID: 31167637 Free PMC article.
-
A phylogenetic approach to inferring the order in which mutations arise during cancer progression.PLoS Comput Biol. 2022 Dec 2;18(12):e1010560. doi: 10.1371/journal.pcbi.1010560. eCollection 2022 Dec. PLoS Comput Biol. 2022. PMID: 36459515 Free PMC article.
-
Modeling colorectal cancer evolution.J Hum Genet. 2021 Sep;66(9):869-878. doi: 10.1038/s10038-021-00930-0. Epub 2021 May 13. J Hum Genet. 2021. PMID: 33986478 Free PMC article. Review.
-
Modeling Tumor Clonal Evolution for Drug Combinations Design.Trends Cancer. 2016 Mar;2(3):144-158. doi: 10.1016/j.trecan.2016.02.001. Trends Cancer. 2016. PMID: 28435907 Free PMC article. Review.
-
Mutations, evolution and the central role of a self-defined fitness function in the initiation and progression of cancer.Biochim Biophys Acta Rev Cancer. 2017 Apr;1867(2):162-166. doi: 10.1016/j.bbcan.2017.03.005. Epub 2017 Mar 21. Biochim Biophys Acta Rev Cancer. 2017. PMID: 28341421 Free PMC article. Review.
Cited by
-
An information theoretic method to identify combinations of genomic alterations that promote glioblastoma.J Mol Cell Biol. 2015 Jun;7(3):203-13. doi: 10.1093/jmcb/mjv026. Epub 2015 May 4. J Mol Cell Biol. 2015. PMID: 25941339 Free PMC article.
-
Inferring models of multiscale copy number evolution for single-tumor phylogenetics.Bioinformatics. 2015 Jun 15;31(12):i258-67. doi: 10.1093/bioinformatics/btv233. Bioinformatics. 2015. PMID: 26072490 Free PMC article.
-
The study of homology between tumor progression genes and members of retroviridae as a tool to predict target-directed therapy failure.Front Pharmacol. 2015 May 1;6:92. doi: 10.3389/fphar.2015.00092. eCollection 2015. Front Pharmacol. 2015. PMID: 25983693 Free PMC article.
-
Genetic Clonality as the Hallmark Driving Evolution of Non-Small Cell Lung Cancer.Cancers (Basel). 2022 Apr 2;14(7):1813. doi: 10.3390/cancers14071813. Cancers (Basel). 2022. PMID: 35406585 Free PMC article. Review.
-
Identification of biomarkers predictive of metastasis development in early-stage colorectal cancer using network-based regularization.BMC Bioinformatics. 2023 Jan 16;24(1):17. doi: 10.1186/s12859-022-05104-z. BMC Bioinformatics. 2023. PMID: 36647008 Free PMC article.
References
-
- Adams R. P., Ghahramani Z., Jordan M. I. Tree-structured stick breaking processes for hierarchical data. Adv. Neural Inf. Process. Syst. (NIPS). 2010;23:19–27.
-
- Alarcón T., Byrne H., Maini P. A multiple scale model for tumor growth. Multiscale Model. Simul. 2005;3:440–475.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources