Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1975 Oct;356(10):1613-23.
doi: 10.1515/bchm2.1975.356.2.1613.

D-glucose dehydrogenase from Bacillus megaterium M 1286: purification, properties and structure

D-glucose dehydrogenase from Bacillus megaterium M 1286: purification, properties and structure

H E Pauly et al. Hoppe Seylers Z Physiol Chem. 1975 Oct.

Abstract

1) Glucose dehydrogenase from Bacillus megaterium has been purified to a specific activity of 550 U per mg protein. The homogeneity of the purified enzyme was demonstrated by gel electrophoresis and isoelectric focusing. 2) The amino acid composition has been determined. 3) The molecular weight of the native enzyme was found to be 116000 by gel permeation chromatography, in good agreement with the values of 120000 and 118000, which were ascertained electrophoretically according to the method of Hedrick and Smith and by density gradient centrifugation, respectively. 4) In the presence of 0.1% sodium dodecylsulfate and 8M urea, the enzyme dissociates into subunits with a molecular weight of 30000 as determined by dodecylsulfate gel electrophoresis. These values indicate that the native enzyme is composed of four polypeptide chains, each probably possessing one coenzyme binding site, which can be concluded from fluorescent titration of the NADH binding sites. 5) In polyacrylamide disc electrophoresis, samples of the purified enzyme exhibit three bands of activity, which present the native (tetrameric) form of glucose dehydrogenase and two monomeric forms (molecular weight 30000), arising under the conditions of pH and ionic strength of this method. 6) The enzyme shows a sharp pH optimum at pH 8.0 in Tris/HCl buffer, and a shift of the pH optimum to pH 9.0 in acetate/borate buffer. The limiting Michaelis constant at pH 9.0 for NAD is 4.5 mM and 47.5 mM for glucose. The dissociation constant for NAD is 0.69 mM. 7) D-Glucose dehydrogenase is highly specific for beta-D-glucose and is capable of using either NAD or NADP. The enzyme is insensitive to sulfhydryl group inhibitors, heavy metal ions and chelating agents.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources