Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Nov;13(4):362-79.
doi: 10.1080/14763141.2014.965727. Epub 2014 Oct 10.

Effects of two football stud configurations on biomechanical characteristics of single-leg landing and cutting movements on infilled synthetic turf

Affiliations

Effects of two football stud configurations on biomechanical characteristics of single-leg landing and cutting movements on infilled synthetic turf

Elizabeth Brock et al. Sports Biomech. 2014 Nov.

Abstract

Multiple playing surfaces and footwear used in American football warrant a better understanding of relationship between different combinations of turf and footwear. The purpose of this study was to examine effects of shoe and stud types on ground reaction force (GRF) and ankle and knee kinematics of a 180° cut and a single-leg 90° land-cut on synthetic turf. Fourteen recreational football players performed five trials of the 180° cut and 90° land-cut in three shoe conditions: non-studded running shoe, and football shoe with natural and synthetic turf studs. Variables were analyzed with a 3 × 2 (shoe × movement) repeated measures analysis of variance (p < 0.05). Peak vertical GRF (p < 0.001) and loading rate (p < 0.001) were greater during 90° land-cut than 180° cut. For 180° cut, natural turf studs produced smaller peak medial GRFs compared to synthetic turf studs and non-studded shoe (p = 0.012). For land-cut, peak eversion velocity was reduced in running shoes compared to natural (p = 0.016) and synthetic (p = 0.002) turf studs. The 90° land-cut movement resulted in greater peak vertical GRF and loading rate compared to the 180° cut. Overall, increased GRFs in the 90° land-cut movement may increase the chance of injury.

Keywords: American football; Synthetic turf; cutting; footwear; single-leg landing.

PubMed Disclaimer

LinkOut - more resources