Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Sep 29:8:2001-12.
doi: 10.2147/OPTH.S68446. eCollection 2014.

Fundus autofluorescence features in the inflammatory maculopathies

Affiliations

Fundus autofluorescence features in the inflammatory maculopathies

Cecilia S Lee et al. Clin Ophthalmol. .

Abstract

Purpose: To describe the fundus autofluorescence (FAF) features of the inflammatory maculopathies and develop a quantification method for FAF analysis.

Methods: This is a retrospective, consecutive case series of patients with inflammatory maculopathies from two tertiary centers. The clinical findings, demographics, and FAF imaging characteristics were reviewed. Foveal autofluorescence (AF) was analyzed. Median and standard deviation (SD) of foveal AF intensity were measured.

Results: Thirty eyes of 15 patients were evaluated with both qualitative and quantitative FAF analysis. In acute macular neuroretinopathy, the active phase showed foveal hypoautofluorescence, which became hypoautofluorescent with resolution. In acute posterior multifocal placoid pigment epitheliopathy, multiple lesions with hypoautofluorescent centers with hyperautofluorescent borders were observed in active disease and became hypoautofluorescent with disease convalescence. In multifocal choroiditis and punctate inner choroiditis, the active hyperautofluorescent lesions progressed to inactive, hypoautofluorescent scars. Active serpiginous choroiditis showed hyperautofluorescent borders adjacent to a helicoid-shaped, hypoautofluorescent scar. Active unilateral acute idiopathic maculopathy (UAIM) showed a complex pattern of hypo- and hyperautoflourescence in the macula. The median foveal AF was the greatest in acute macular neuroretinopathy and UAIM among the maculopathies, while the greatest SD of foveal AF intensity was observed in UAIM.

Conclusion: The active phase of the majority of inflammatory maculopathies was characterized by hyperautofluorescent lesions. Increased SD of foveal AF correlated with a mixture of hypo-and hyperautoflourescence. Median and SD may be useful metrics in foveal AF and quantifiable values that may be assessed over time as a disease process evolves. Improvements in quantification methods of FAF imaging may allow us to objectively evaluate posterior uveitis.

Keywords: foveal autofluorescence; fundus autofluorescence imaging; posterior uveitis; quantification.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Fundus autofluorescence (FAF) imaging and three-dimensional (3D) heat maps demonstrating range of foveal autofluorescence. Notes: (A) FAF imaging of normal fundus. A circular area that corresponded to the size of the optic disc (white arrow) was placed on the center of the foveola (Indicated by the yellow circle). The median and standard deviation of foveal autofluorescence were measured in this area. (B) 3D heat map shows a 3D representation of low-to high-range FAF in the center of the foveola. (C) FAF in the acute stage of unilateral acute idiopathic maculopathy. The yellow circle corresponds to the center of the foveola, where the foveal autofluorescence was measured. (D) 3D heat map of the center of the foveola of a unilateral acute idiopathic maculopathy patient shows heterogeneous distribution of hyper- and hypoautofluorescence.
Figure 2
Figure 2
Median and SD of foveal autofluorescence. Notes: (A) AMNR and UAIM show the highest median values. The y-axis shows median foveal autofluorescence. (B) The SD of AMNR was the lowest, while the SD of UAIM was the highest, corresponding to the difference of heterogeneity of the autofluorescence pattern in the two diseases. The y-axis shows the SD of foveal autofluorescence intensity. Abbreviations: AMNR, acute macular neuroretinopathy; APMPPE, acute posterior multifocal placoid pigment epitheliopathy; MFC, multifocal choroiditis; PIC, punctate inner choroidopathy; SC, serpiginous choroiditis; SD, standard deviation; UAIM, unilateral acute idiopathic maculopathy.
Figure 3
Figure 3
Fundus autofluorescence composite comparing the inflammatory maculopathies. Notes: (A) Acute macular neuroretinopathy of the left eye shows radial areas of hypoautofluorescence with surrounding hyperautofluorescence. (B) Active stage of acute posterior multifocal placoid pigment epitheliopathy in the right eye shows hyperautofluorescent borders corresponding to creamy borders of choroidal lesions. (C) Petaloid appearance of hyperautofluorescence in a patient with multifocal choroiditis. (D) Punctate inner choroidopathy fundus autofluorescence image shows hypoautofluorescence with surrounding hyperautofluorescent ring in a patient with a new lesion. (E) Serpiginous choroiditis shows ill-defined hyperautofluorescent borders indicating activity adjacent to areas of hypoautofluorescence from resolving disease. Mixed pattern of hypo- and hyperautofluorescence reveals disease in varying stages of evolution. (F) Stippled hyper- and hypoautofluorescence characterizes the active phase of unilateral acute idiopathic maculopathy.
Figure 4
Figure 4
Diagnostic imaging in a 32-year-old patient with acute macular neuroretinopathy. Notes: (A) Fundus photograph shows subtle reddish-brown discoloration superior to the fovea. (B) Fundus autofluorescence image shows multiple radial areas of hypoautofluorescence corresponding to patient’s paracentral scotomata. (C) Near-infrared reflectance image highlights the hyporeflective lesions in the fovea. (D) Spectral-domain optical coherence tomography scan shows areas of attenuation of the ellipsoid portion of the inner segments nasal to the fovea (yellow arrows).
Figure 5
Figure 5
Fundus photographs and corresponding autofluorescence of patient with acute posterior multifocal placoid pigment epitheliopathy. Notes: A, C, E, and G show the right eye. B, D, F, and H show the left eye. (A and B) Active phase of acute posterior multifocal placoid pigment epitheliopathy shows bilateral cream-colored, placoid lesions with ring of hyperpigmentation in the right eye and fovea-threatening lesion in the left eye. (C and D) Following treatment with corticosteroids, hyperpigmentation of the lesions is observed in the right eye and subtle retinal pigment epithelial hyperpigmentation is seen in the left eye. (E and F) Fundus autofluorescence imaging shows hypoautofluorescence with surrounding hyperautofluorescence in the early, active phase of disease in the right foveal region and in the superotemporal macula of the left eye. (G and H) With corticosteroid therapy, the hyperautofluorescence decreases and a subtle mixture of predominantly hypoautofluorescent signal is observed in the right eye more than in the left eye.
Figure 6
Figure 6
Fundus photographs and fundus autofluorescence in punctate inner choroidopathy. Notes: Fundus photographs of patient with punctate inner choroidopathy show a new active lesion in the right eye (white arrow) (A) and atrophic spots with hyperpigmentation in the left eye (B). Fundus autofluorescence imaging shows a hypoautofluorescent spot with ring of hyperautofluorescence in the area of the active lesion in the right eye (white arrow) (C) and punctate hypoautofluorescence corresponding to inactive lesions in the left eye (D).
Figure 7
Figure 7
Fundus photograph and fundus autofluorescence imaging in multifocal choroiditis. Notes: (A) Fundus photograph shows trace vitreous haze and multiple lesions in various stages of healing within the retinal periphery and mid-periphery. (B) Fundus autofluorescence image does not adequately capture the peripheral lesions but shows hyperautofluorescence in a petaloid distribution. (C) Higher magnification of the inset in (B) (white box) shows hyperautofluorescence in a petaloid pattern from cystoid macular edema. (D) Spectral-domain optical coherence tomography scan shows multiple intraretinal cystic spaces and outer segment irregularities leading to decreased visual acuity of 20/200. Abbreviations: T, temporal; N, nasal.
Figure 8
Figure 8
Fundus photographs and fundus autofluorescence in serpiginous choroiditis. Notes: Fundus photographs show helicoid areas of chorioretinal atrophy and lesions emanating from optic disc in the right eye (A) and left eye (B). There are particularly active lesions in the right eye (white arrow). Fundus autofluorescence imaging shows areas of hyperautofluorescence (white arrow) bordering areas of mixed hypo- and hyperautofluorescence corresponding to lesions in various stages of evolution in the right eye (C). In the left eye (D), there is primarily hypoautofluorescence corresponding to areas of inactive chorioretinal atrophy. However, there are mildly hyperautofluorescent areas (yellow arrows) corresponding to healing lesions. These lesions eventually became hypoautofluorescent.
Figure 9
Figure 9
Fundus photograph and fundus autofluorescence in unilateral acute idiopathic maculopathy. Notes: (A) Fundus photograph shows active stage of unilateral acute idiopathic maculopathy with hyperpigmented macular lesion with surrounding rim of retinal pigment epithelial atrophy. (B) Fundus autofluorescence shows a complex pattern of mixed hypo- and hyperautofluorescent signal within this macular lesion.

References

    1. Yeh S, Forooghian F, Wong WT, et al. Fundus autofluorescence imaging of the white dot syndromes. Arch Ophthalmol. 2010;128:46–56. - PMC - PubMed
    1. Holz FG, Schmitz-Valckenberg S, Spaide RF, Bird AC, editors. Atlas of Fundus Autofluorescence Imaging. Berlin: Springer; 2007.
    1. Roesel M, Henschel A, Heinz C, Dietzel M, Spital G, Heiligenhaus A. Fundus autofluorescence and spectral domain optical coherence tomography in uveitic macular edema. Graefes Arch Clin Exp Ophthalmol. 2009;247:1685–1689. - PubMed
    1. von Rückmann von A, Fitzke FW, Bird AC. Distribution of pigment epithelium autofluorescence in retinal disease state recorded in vivo and its change over time. Graefes Arch Clin Exp Ophthalmol. 1999;237:1–9. - PubMed
    1. Gupta A, Bansal R, Gupta V, Sharma A. Fundus autofluorescence in serpiginouslike choroiditis. Retina. 2012;32:814–825. - PubMed

LinkOut - more resources