Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Oct;34(6):1469-89.
doi: 10.1148/rg.346140084.

Dose reduction in cardiothoracic CT: review of currently available methods

Affiliations
Review

Dose reduction in cardiothoracic CT: review of currently available methods

Diana E Litmanovich et al. Radiographics. 2014 Oct.

Abstract

Radiation exposure from computed tomography (CT) has received much attention lately in the medical literature and the media, given the relatively high radiation dose that characterizes a CT examination. Although there are a variety of possible strategies for reducing radiation exposure from CT in an individual patient, optimal CT image acquisition requires that the radiologist understand new scanner technology and how to implement the most effective means of dose reduction while maintaining image quality. The authors describe a practical approach to dose reduction in cardiothoracic radiology, discussing CT radiation dose metrics (eg, CT dose index, dose-length product, effective diameter, and size-specific dose estimate) as well as CT scanner parameters that directly or indirectly influence radiation dose (eg, scan length, x-ray tube output, tube current modulation, pitch, image reconstruction techniques [including iterative reconstruction], and noise reduction). These variables are discussed in terms of their relative importance to image quality and the implications of parametric changes for image quality and diagnostic content, and practical recommendations are made for their immediate implementation in the clinical setting. Taken together, the principles of physics and key parameters involved in reducing radiation dose while maintaining image quality can serve as a "survival guide" for a diagnostic radiology practice.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources