Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015;34(1):7-12.
doi: 10.4012/dmj.2013-345. Epub 2014 Oct 10.

Three-unit reinforced polyetheretherketone composite FDPs: influence of fabrication method on load-bearing capacity and failure types

Affiliations
Free article

Three-unit reinforced polyetheretherketone composite FDPs: influence of fabrication method on load-bearing capacity and failure types

Bogna Stawarczyk et al. Dent Mater J. 2015.
Free article

Abstract

To investigate the influence of different fabrication methods of three-unit reinforced polyetheretherketone composite (PEEK/C) fixed dental prostheses (FDPs) on fracture load. Forty-five three-unit anatomically supported PEEK/C FDPs were fabricated as follows: i. milled using a CAD/CAM system from an industrially fabricated PEEK/C blank, ii. pressed from industrially fabricated PEEK/C pellets, and iii. pressed from granular PEEK/C. Fracture load was measured and data were statistically analysed (p<0.05). CAD/CAM fabricated FDPs (2,354 N) presented a higher mean fracture load than those pressed from granular PEEK/C material (1,738 N) (p<0.001). CAD/CAM milled FDPs and those pressed from PEEK/C-pellets showed spontaneous and brittle fractures near the pontic without deformation of the FDP. In contrast, granulate pressed FDPs showed some plastic deformation without fracture. CAD/CAM fabricated FDPs, and FDPs pressed from PEEK/C pellets showed higher Weibull moduli compared to FDPs pressed in granular form. Industrial pre-pressing of blanks (CAD/CAM/pellet) increased the stability and reliability of PEEK restorations.

PubMed Disclaimer