Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2015 Jan:78:23-9.
doi: 10.1016/j.freeradbiomed.2014.09.026. Epub 2014 Oct 13.

Oxidative DNA damage in the in utero initiation of postnatal neurodevelopmental deficits by normal fetal and ethanol-enhanced oxidative stress in oxoguanine glycosylase 1 knockout mice

Affiliations
Comparative Study

Oxidative DNA damage in the in utero initiation of postnatal neurodevelopmental deficits by normal fetal and ethanol-enhanced oxidative stress in oxoguanine glycosylase 1 knockout mice

Lutfiya Miller-Pinsler et al. Free Radic Biol Med. 2015 Jan.

Abstract

Studies in mice with deficient antioxidative enzymes have shown that physiological levels of reactive oxygen species (ROS) can adversely affect the developing embryo and fetus. Herein, DNA repair-deficient progeny of oxoguanine glycosylase 1 (ogg1)-knockout mice lacking repair of the oxidative DNA lesion 8-oxo-2'-deoxyguanosine (8-oxodGuo) exhibited enhanced postnatal neurodevelopmental deficits, revealing the pathogenic potential of 8-oxodGuo initiated by physiological ROS production in fetal brain and providing the first evidence of a pathological phenotype for ogg1-knockout mice. Moreover, when exposed in utero to ethanol (EtOH), ogg1-knockout progeny exhibited higher levels of 8-oxodGuo in fetal brain and more severe postnatal neurodevelopmental deficits than wild-type littermates, both of which were blocked by pretreatment with the free radical trapping agent phenylbutylnitrone. These results suggest that ROS-initiated DNA oxidation, as distinct from altered signal transduction, contributes to neurodevelopmental deficits caused by in utero EtOH exposure, and fetal DNA repair is a determinant of risk.

Keywords: Behavioral deficits; DNA oxidation; Ethanol; Free radicals; Neurodevelopmental deficits; OGG1 mice; Passive avoidance; Phenylbutylnitrone; Reactive oxygen species.

PubMed Disclaimer

Publication types

MeSH terms