Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Nov;9(11):3929-36.
doi: 10.1523/JNEUROSCI.09-11-03929.1989.

Vasopressin receptors of the vasopressor (V1) type in the nucleus of the solitary tract of the rat mediate direct neuronal excitation

Affiliations

Vasopressin receptors of the vasopressor (V1) type in the nucleus of the solitary tract of the rat mediate direct neuronal excitation

M Raggenbass et al. J Neurosci. 1989 Nov.

Abstract

The existence of vasopressin-sensitive neurons in the nucleus of the solitary tract of the rat and the presence in this brain area of vasopressin binding sites were investigated using extracellular single-unit recordings from brain-stem slices and light microscopic autoradiography. About 45% of the recorded neurons responded to vasopressin at 5-2000 nM by a reversible, concentration-dependent increase in firing rate. The action of vasopressin was direct, was suppressed by a vasopressor antagonist, and was mimicked by a vasopressor agonist. Oxytocin was 10-100 times less efficient than vasopressin and a specific antidiuretic agonist was without effect. Using light microscopic autoradiography and 3H-arginine vasopressin as a ligand, high-affinity vasopressin binding sites were found distributed over the whole rostrocaudal extent of the nucleus of the solitary tract. Binding was displaced by unlabeled vasopressor agonist but not by unlabeled antidiuretic agonist. Thus, the nucleus of the solitary tract contains V1-type vasopressin receptors which are, at least in part, located on neuronal membranes and whose activation generates bioelectrical signals. Solitary tract vasopressin-sensitive neurons may be the target of a vasopressinergic innervation originating in the hypothalamic paraventricular nucleus and could be involved in the central regulation of cardiovascular functions.

PubMed Disclaimer

Publication types

LinkOut - more resources