Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Jan;77(1-2):148-55.
doi: 10.1038/pr.2014.171. Epub 2014 Oct 14.

Impact of nutrition on brain development and its neuroprotective implications following preterm birth

Affiliations
Free PMC article
Review

Impact of nutrition on brain development and its neuroprotective implications following preterm birth

Kristin Keunen et al. Pediatr Res. 2015 Jan.
Free PMC article

Abstract

The impact of nutrition on brain development in preterm infants has been increasingly appreciated. Early postnatal growth and nutrient intake have been demonstrated to influence brain growth and maturation with subsequent effects on neurodevelopment that persist into childhood and adolescence. Nutrition could also potentially protect against injury. Inflammation and perinatal infection play a crucial role in the pathogenesis of white matter injury, the most common pattern of brain injury in preterm infants. Therefore, nutritional components with immunomodulatory and/or anti-inflammatory effects may serve as neuroprotective agents. Moreover, growing evidence supports the existence of a microbiome-gut-brain axis. The microbiome is thought to interact with the brain through immunological, endocrine, and neural pathways. Consequently, nutritional components that may influence gut microbiota may also exert beneficial effects on the developing brain. Based on these properties, probiotics, prebiotic oligosaccharides, and certain amino acids are potential candidates for neuroprotection. In addition, the amino acid glutamine has been associated with a decrease in infectious morbidity in preterm infants. In conclusion, early postnatal nutrition is of major importance for brain growth and maturation. Additionally, certain nutritional components might play a neuroprotective role against white matter injury, through modulation of inflammation and infection, and may influence the microbiome-gut-brain axis.

PubMed Disclaimer

Figures

Figure 1
Figure 1
The reciprocal interaction between gut microbiota and the brain. Gut microbiota may modulate brain function and development through immune signaling (e.g., pro- and anti-inflammatory cytokines, chemokines, and immune cells), endocrine, and neural pathways. Conversely, the brain may influence the gut through neurotransmitters that impact on immune function, and through alterations in cortisol levels, intestinal motility, and permeability. Nutritional components may exert effects on each of these communication pathways. ACTH, adrenocorticotropic hormone; CRH, corticotropin-releasing hormone.

References

    1. Clouchoux C, Guizard N, Evans AC, du Plessis AJ, Limperopoulos C. Normative fetal brain growth by quantitative in vivo magnetic resonance imaging. Am J Obstet Gynecol. 2012;206:173.e1–8. - PubMed
    1. Hüppi PS, Warfield S, Kikinis R, et al. Quantitative magnetic resonance imaging of brain development in premature and mature newborns. Ann Neurol. 1998;43:224–35. - PubMed
    1. Dubois J, Benders M, Cachia A, et al. Mapping the early cortical folding process in the preterm newborn brain. Cereb Cortex. 2008;18:1444–54. - PubMed
    1. Volpe JJ. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol. 2009;8:110–24. - PMC - PubMed
    1. Volpe JJ.Neurology of the Newborn5th ed. Philadelphia, PA; Elsevier; 2008

Publication types

MeSH terms