Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Aug 15;9(16):1493-7.
doi: 10.4103/1673-5374.139470.

Cervical spinal cord injury: tailoring clinical trial endpoints to reflect meaningful functional improvements

Affiliations
Review

Cervical spinal cord injury: tailoring clinical trial endpoints to reflect meaningful functional improvements

Lisa M Bond et al. Neural Regen Res. .

Abstract

Cervical spinal cord injury (SCI) results in partial to full paralysis of the upper and lower extremities. Traditional primary endpoints for acute SCI clinical trials are too broad to assess functional recovery in cervical subjects, raising the possibility of false positive outcomes in trials for cervical SCI. Endpoints focused on the recovery of hand and arm control (e.g., upper extremity motor score, motor level change) show the most potential for use as primary outcomes in upcoming trials of cervical SCI. As the field moves forward, the most reliable way to ensure meaningful clinical testing in cervical subjects may be the development of a composite primary endpoint that measures both neurological recovery and functional improvement.

Keywords: Cethrin; SCI; UEMS; cervical; clinical trial; endpoint; spinal cord injury.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Upper extremity motor score (UEMS): Phase I/IIa Cethrin trial data vs. historical results. (A) Change in UEMS over time. The average change in UEMS from baseline is displayed at 0, 0.5, 6, 12, 26, and 52 week intervals after initial examination for cethrin-treated cervical subjects in the three highest dose groups (phase I/IIa trial: 3, 6, and 9 mg doses, n = 9), and at 0, 4, 8, 16, 26, and 52 week intervals for historical cervical subjects in the Sygen database (n = 187, C5–7). (B) Change in UEMS at 1 year after SCI. The average change in UEMS from baseline to 1 year post-injury is displayed for cethrin-treated cervical subjects (phase I/IIa trial: n = 16 for all doses [0.3, 1, 3, 6, 9 mg], n = 9 for 3 highest doses 3, 6, 9 mg]) and comparative historical cervical populations analyzed in the literature (Sygen database [n = 187, C5–7], Model systems [n = 315]). Missing data points for dropouts were calculated using the method of Last Observation Carried Forward. Error bars represent standard error.

Similar articles

Cited by

References

    1. Anderson KD. Targeting recovery: priorities of the spinal cord-injured population. J Neurotrauma. 2004;21:1371–1383. - PubMed
    1. Bracken MB. Methylprednisolone and acute spinal cord injury: an update of the randomized evidence. Spine. 2001;26:S47–54. - PubMed
    1. Bracken MB, Shepard MJ, Holford TR, Leo-Summers L, Aldrich EF, Fazl M, Fehlings M, Herr DL, Hitchon PW, Marshall LF, Nockels RP, Pascale V, Perot PL, Jr, Piepmeier J, Sonntag VK, Wagner F, Wilberger JE, Winn HR, Young W. Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. National Acute Spinal Cord Injury Study. JAMA. 1997;277:1597–1604. - PubMed
    1. Casha S, Zygun D, McGowan MD, Bains I, Yong VW, Hurlbert RJ. Results of a phase II placebo-controlled randomized trial of minocycline in acute spinal cord injury. Brain. 2012;135:1224–1236. - PubMed
    1. Cutter GR, Baier ML, Rudick RA, Cookfair DL, Fischer JS, Petkau J, Syndulko K, Weinshenker BG, Antel JP, Confavreux C, Ellison GW, Lublin F, Miller AE, Rao SM, Reingold S, Thompson A, Willoughby E. Development of a multiple sclerosis functional composite as a clinical trial outcome measure. Brain. 1999;122:871–882. - PubMed