Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Winter;11(1):83-90.

Design, Synthesis and Pharmacological Evaluation of Novel 2-[2-(2-Chlorophenoxy) phenyl]-1,3,4-oxadiazole Derivatives as Benzodiazepine Receptor Agonists

Affiliations

Design, Synthesis and Pharmacological Evaluation of Novel 2-[2-(2-Chlorophenoxy) phenyl]-1,3,4-oxadiazole Derivatives as Benzodiazepine Receptor Agonists

Mehrdad Faizi et al. Iran J Pharm Res. 2012 Winter.

Abstract

New derivatives of 2-[2-(2-Chlorophenoxy)phenyl]-1,3,4-oxadiazole as candidates for agonistic effect on benzodiazepine receptors were synthesized. Conformational analysis and superimposition of energy minima conformers of the novel compounds on estazolam, a known benzodiazepine agonist, revealed that the main proposed benzodiazepine pharmacophores were well matched. In pharmacological evaluation, anticonvulsant activity of the compounds determined by pentylenetetrazole-induced lethal convulsion and maximal electroshock tests. The results showed that the introduction of an amino substituent in position 5 of 1,3,4- oxadiazole ring generates compound 6 that has a considerable effect. Compound 8 with a hydroxyl substituent on position 5 of 1,3,4- oxadiazole ring showed a relatively mild anticonvulsant activity, which was significantly weaker than that of diazepam and compound 6. Anticonvulsant effects of active compounds were antagonized by flumazenil, an antagonist of benzodiazepine receptors, indicating the involvement of benzodiazepine receptors in these effects.

Keywords: 1,3,4-Oxadiazoles; Anticonvulsant; Benzodiazepine receptors; Conformational analysis; Synthesis.

PubMed Disclaimer

Figures

Figure 1
Figure 1
The structure of designed compounds 6-11 and estazolam. The main pharmacophores have been conserved
Figure 2
Figure 2
Reagents: (a) 1) Na, dry methanol, rt, 2h; 2) DMF, Cu, reflux; (b) methanol, H2SO4, reflux, 7 h; (c) methanol, NH2NH2.H2O, stir, rt, 12 h; (d) formic acid, reflux, 4 h; (e) P2O5, xylene, reflux, 3 h; (f) BrCN, dioxan, stir, rt, overnight; (g) CS2, ethanol, KOH, reflux, 7 h; (h) 1,1΄-carbonyldiimidazole, triethylamine, dry THF, 0°C, 5h then rt, overnight; (i) toluene, phenylisocyanate, DCC, reflux, 7 h; (j) methyl iodide, ethanol, NaOH, ultrasonication, 5 min; (k) benzyl chloride, ethanol, NaOH, ultrasonication, 5 min
Figure 3
Figure 3
Stereoview of the superimposition of the energy minima conformers of estazolam (top left) and compound 6 (top right).

Similar articles

Cited by

References

    1. Mohler H, Fritschy JM, Rudolph U. A new benzodiazepine pharmacology. J. Pharmacol. Exp. Ther. 2002;300:2–8. - PubMed
    1. Lader M. Drug development optimization--benzodiazepines. Agents Actions Suppl. 1990;29:59–69. - PubMed
    1. Harris DL, Loew G. Development and assessment of a 3d pharmacophore for ligand recognition of bdzr/gabaa receptors initiating the anxiolytic response. Bioorg. Med. Chem. 2000;8:2527–2538. - PubMed
    1. Filizola M, Harris DL, Loew GH. Development of a 3d pharmacophore for nonspecific ligand recognition of alpha1, alpha2, alpha3, alpha5, and alpha6 containing gaba(a)/benzodiazepine receptors. Bioorg. Med. Chem. 2000;8:1799–1807. - PubMed
    1. Huang Q, He X, Ma C, Liu R, Yu S, Dayer CA, Wenger GR, McKernan R, Cook JM. Pharmacophore/receptor models for gaba(a)/bzr subtypes (alpha1beta3gamma2, alpha5beta3gamma2, and alpha6beta3gamma2) via a comprehensive ligand-mapping approach. J. Med. Chem. 2000;43:71–95. - PubMed

LinkOut - more resources