Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Dec 15;264(35):21018-23.

Functional consequences of mutations in the beta-strand sector of the Ca2(+)-ATPase of sarcoplasmic reticulum

Affiliations
  • PMID: 2531742
Free article

Functional consequences of mutations in the beta-strand sector of the Ca2(+)-ATPase of sarcoplasmic reticulum

J P Andersen et al. J Biol Chem. .
Free article

Abstract

Kinetic studies of the phosphoenzyme intermediates of site-specific mutants were used to examine the role of Gly233 in the reaction mechanism of the sarcoplasmic reticulum Ca2(+)-ATPase. When this glycine residue, which is highly conserved among cation-transporting ATPases, was replaced by valine, arginine, or glutamic acid, a complete loss of the ability to pump Ca2+ was observed. The mutant enzymes were able to form an ADP-sensitive phosphoenzyme intermediate (E1P) by reaction with ATP in the presence of Ca2+, but this intermediate decayed to the ADP-insensitive form (E2P) very slowly, relative to the wild-type enzyme. The mutant phosphoenzyme intermediate remained ADP-sensitive, even when phosphorylation from ATP was performed under conditions which permitted accumulation of the ADP-insensitive phosphoenzyme intermediate in the wild type. The mutants were also defective in their ability to form the ADP-insensitive phosphoenzyme intermediate by phosphorylation from inorganic phosphate. In addition, they displayed a higher affinity for Ca2+ and a lower cooperativity in Ca2+ binding than did the wild-type enzyme, as measured through the phosphorylation reaction with ATP. These findings can be rationalized either in terms of a parallel shift of E1 to E2 and E1P to E2P conformational equilibria toward the E1 and E1P forms, respectively, or in terms of destabilization of the phosphoryl-protein interaction in the E2P form. The roles of 7 other residues located in the vicinity of Gly233 were also examined by mutation. Although the side chains of these residues are potential Ca2+ ligands, their replacement did not affect the Ca2+ affinity of the enzyme, suggesting the lack of a role of this region of the peptide in formation of Ca2(+)-binding sites.

PubMed Disclaimer

Publication types

LinkOut - more resources