Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Nov 12;6(21):18981-8.
doi: 10.1021/am504874f. Epub 2014 Oct 30.

High energy density and breakdown strength from β and γ phases in poly(vinylidene fluoride-co-bromotrifluoroethylene) copolymers

Affiliations

High energy density and breakdown strength from β and γ phases in poly(vinylidene fluoride-co-bromotrifluoroethylene) copolymers

Matthew R Gadinski et al. ACS Appl Mater Interfaces. .

Abstract

Poly(vinylidene fluoride) PVDF-based copolymers represent the state of the art dielectric polymers for high energy density capacitors. Past work on these copolymers has been done with limited emphasis on the effects of copolymer composition and with a limited range of defect monomers, focusing primarily on the commercially available poly(vinylidene fluoride-co-chlorotrifluoroethylene), P(VDF-CTFE), and poly(vinylidene fluoride-co-hexafluoropropylene), P(VDF-HFP), and the processing thereof. To expand on this area of research, copolymers of VDF and bromotrifluoroethylene (BTFE) were synthesized examining the composition range where uniaxial stretching was possible. It is found that P(VDF-BTFE) copolymers with small BTFE contents (< 2 mol %) stabilize the γ phase, compared to P(VDF-CTFE)s and P(VDF-HFP)s that are largely α phase in composition. Furthermore, different from P(VDF-CTFE)s and P(VDF-HFP)s, whose energy storage capabilities depend on the reversibility of the α to β phases transformation, high discharged energy densities (i.e., 20.8 J/cm(3) at 716 MV/m) are also achievable through the β and γ phases in P(VDF-BTFE)s without significantly reducing crystallinity and breakdown strength. This study demonstrates new avenues to the development of high energy density ferroelectric copolymers via manipulation of the γ phase through variation of the structure and content of comonomers.

Keywords: capacitors; dielectric properties; energy storage; ferroelectric polymers; poly(vinylidene fluoride).

PubMed Disclaimer

Similar articles

Publication types

LinkOut - more resources