Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Nov;44(11):3201-5.
doi: 10.1002/eji.201445191.

Conflicting consequences of immunity to cancer versus autoimmunity to neurons: insights from paraneoplastic disease

Affiliations
Free article

Conflicting consequences of immunity to cancer versus autoimmunity to neurons: insights from paraneoplastic disease

Lawrence Steinman. Eur J Immunol. 2014 Nov.
Free article

Abstract

Immunologists are well aware that cancer regression and increased patient survival with the use of checkpoint inhibitors, such as ipilimumab, an antibody directed against cytotoxic T-lymphocyte-associated antigen 4, CTLA-4 (CD152), is accompanied by concomitant autoimmunity. For over 30 years, a small group of investigators have shown that the rare paraneoplastic syndromes are caused by immunity to shared antigens found on both tumors and on components of the nervous system. In this issue of the European Journal of Immunology, Blachère et al. [Eur. J. Immunol. 2014. 44: 3240-3251] elucidate some of the molecular mechanisms underlying the tolerance to neuronal antigens which share epitopes with oncologic antigens, observed in the context of paraneoplastic syndromes in mice. The presence of the shared tumor antigen on a nonhematopoietic cell underlies the basis for a certain level of tolerance in CD4+ and CD8+ T cells, preventing these cells from attacking the brain, but allowing them to lyse the tumor upon transfer into tumor-bearing recipient mice. Comparisons between the paraneoplastic syndromes and the new autoimmune conditions seen with antibodies to immune checkpoints at CD152 or at CD279 are likely to illuminate shared mechanisms and solutions to these vexing diseases.

Keywords: Autoimmunity; Cancer; Paraneoplastic neurological disease; Shared antigens; T cells.

PubMed Disclaimer

MeSH terms

LinkOut - more resources