Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Feb 15;31(4):532-8.
doi: 10.1093/bioinformatics/btu678. Epub 2014 Oct 15.

An efficient algorithm for the blocked pattern matching problem

Affiliations
Free article

An efficient algorithm for the blocked pattern matching problem

Fei Deng et al. Bioinformatics. .
Free article

Abstract

Motivation: Tandem mass spectrometry (MS) has become the method of choice for protein identification and quantification. In the era of big data biology, tandem mass spectra are often searched against huge protein databases generated from genomes or RNA-Seq data for peptide identification. However, most existing tools for MS-based peptide identification compare a tandem mass spectrum against all peptides in a database whose molecular masses are similar to the precursor mass of the spectrum, making mass spectral data analysis slow for huge databases. Tag-based methods extract peptide sequence tags from a tandem mass spectrum and use them as a filter to reduce the number of candidate peptides, thus speeding up the database search. Recently, gapped tags have been introduced into mass spectral data analysis because they improve the sensitivity of peptide identification compared with sequence tags. However, the blocked pattern matching (BPM) problem, which is an essential step in gapped tag-based peptide identification, has not been fully solved.

Results: In this article, we propose a fast and memory-efficient algorithm for the BPM problem. Experiments on both simulated and real datasets showed that the proposed algorithm achieved high speed and high sensitivity for peptide filtration in peptide identification by database search.

Contact: cswangl@cityu.edu.hk or xwliu@iupui.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

PubMed Disclaimer

Similar articles

Cited by

Publication types