Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Oct 17:12:289.
doi: 10.1186/s12967-014-0289-8.

Prognostic and treatment predictive significance of SATB1 and SATB2 expression in pancreatic and periampullary adenocarcinoma

Affiliations

Prognostic and treatment predictive significance of SATB1 and SATB2 expression in pancreatic and periampullary adenocarcinoma

Jacob Elebro et al. J Transl Med. .

Abstract

Background: Pancreatic cancer and other pancreaticobiliary type periampullary adenocarcinomas have a dismal prognosis even after resection and neoadjuvant chemotherapy. Intestinal type periampullary adenocarcinomas generally have a better prognosis, but little is known on optimal neoadjuvant and adjuvant treatment. New prognostic and treatment predictive biomarkers are needed for improved treatment stratification of patients with both types of periampullary adenocarcinoma. Expression of the Special AT-rich sequence-binding protein 1 (SATB1) has been demonstrated to confer a worse prognosis in several tumour types, whereas its close homologue SATB2 is a proposed diagnostic and favourable prognostic marker for colorectal cancer. The prognostic value of SATB1 and SATB2 expression in periampullary adenocarcinoma has not yet been described.

Methods: Immunohistochemical expression of SATB1 and SATB2 was analysed in tissue microarrays with primary tumours and a subset of paired lymph node metastases from 175 patients operated with pancreaticoduodenectomy for periampullary adenocarcinoma. Kaplan-Meier and Cox regression analysis were applied to explore the impact of SATB1 and SATB2 expression on recurrence free survival (RFS) and overall survival (OS).

Results: Positive expression of SATB1 was denoted in 16/106 primary pancreatobiliary type tumours and 11/65 metastases, and in 15/63 primary intestinal type tumours and 4/26 metastases, respectively. Expression of SATB1 was an independent predictor of a significantly shorter RFS and OS in pancreatobiliary type, but not in intestinal type adenocarcinomas. Moreover, SATB1 expression predicted an improved response to adjuvant chemotherapy in both tumour types. SATB2-expression was seen in 3/107 pancreatobiliary type primary tumours, and in 8/61 intestinal type primary tumours. The small number of cases with positive SATB2 expression did not allow for any firm conclusions on its prognostic value.

Conclusions: These findings demonstrate the potential utility of SATB1 as a prognostic and predictive biomarker for chemotherapy response in both intestinal type and pancreatobiliary type periampullary adenocarcinomas, including pancreatic cancer.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Immunohistochemical stains of SATB1 (A-C) and SATB2 (D-F) showing varying fractions and intensities of positive cells (A-B and D-E) and negative stains (C and F). B and E show low fractions of weakly positive cancer cells, in tumours denoted as positive.
Figure 2
Figure 2
Kaplan-Meier estimates of overall survival (A) and recurrence free survival (B) in pancreatobiliary type tumours stratified by SATB1-expression and corresponding curves stratified for adjuvant chemotherapy (C-D).
Figure 3
Figure 3
Kaplan-Meier estimates of overall survival (A) and recurrence free survival (B) in intestinal type tumours stratified by SATB1-expression and corresponding curves stratified for adjuvant chemotherapy (C-D).
Figure 4
Figure 4
Kaplan-Meier estimates of overall survival (A) and recurrence free survival (B) in pancreatobiliary type tumours stratified by SATB2-expression and corresponding curves stratified for adjuvant chemotherapy (C-D).
Figure 5
Figure 5
Kaplan-Meier estimates of overall survival (A) and recurrence free survival (B) in intestinal type tumours stratified by SATB2-expression and corresponding curves stratified for adjuvant chemotherapy (C-D).

References

    1. Romiti A, Barucca V, Zullo A, Sarcina I, Di Rocco R, D'Antonio C, Latorre M, Marchetti P. Tumors of ampulla of Vater: A case series and review of chemotherapy options. World J Gastrointest Oncol. 2012;4:60–67. doi: 10.4251/wjgo.v4.i3.60. - DOI - PMC - PubMed
    1. Westgaard A, Pomianowska E, Clausen OP, Gladhaug IP. Intestinal-type and pancreatobiliary-type adenocarcinomas: how does ampullary carcinoma differ from other periampullary malignancies? Ann Surg Oncol. 2013;20:430–439. doi: 10.1245/s10434-012-2603-0. - DOI - PubMed
    1. Han HJ, Russo J, Kohwi Y, Kohwi-Shigematsu T. SATB1 reprogrammes gene expression to promote breast tumour growth and metastasis. Nature. 2008;452:187–193. doi: 10.1038/nature06781. - DOI - PubMed
    1. Dobreva G, Dambacher J, Grosschedl R. SUMO modification of a novel MAR-binding protein, SATB2, modulates immunoglobulin mu gene expression. Genes Dev. 2003;17:3048–3061. doi: 10.1101/gad.1153003. - DOI - PMC - PubMed
    1. Kohwi-Shigematsu T, Poterlowicz K, Ordinario E, Han HJ, Botchkarev VA, Kohwi Y. Genome organizing function of SATB1 in tumor progression. Semin Cancer Biol. 2013;23:72–79. doi: 10.1016/j.semcancer.2012.06.009. - DOI - PMC - PubMed

Publication types

MeSH terms

Substances