Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Oct 22;136(42):14722-5.
doi: 10.1021/ja5088024. Epub 2014 Oct 13.

Cocoon-like self-degradable DNA nanoclew for anticancer drug delivery

Affiliations

Cocoon-like self-degradable DNA nanoclew for anticancer drug delivery

Wujin Sun et al. J Am Chem Soc. .

Abstract

A bioinspired cocoon-like anticancer drug delivery system consisting of a deoxyribonuclease (DNase)-degradable DNA nanoclew (NCl) embedded with an acid-responsive DNase I nanocapsule (NCa) was developed for targeted cancer treatment. The NCl was assembled from a long-chain single-stranded DNA synthesized by rolling-circle amplification (RCA). Multiple GC-pair sequences were integrated into the NCl for enhanced loading capacity of the anticancer drug doxorubicin (DOX). Meanwhile, negatively charged DNase I was encapsulated in a positively charged acid-degradable polymeric nanogel to facilitate decoration of DNase I into the NCl by electrostatic interactions. In an acidic environment, the activity of DNase I was activated through the acid-triggered shedding of the polymeric shell of the NCa, resulting in the cocoon-like self-degradation of the NCl and promoting the release of DOX for enhanced therapeutic efficacy.

PubMed Disclaimer

Figures

Figure 1
Figure 1
(a) Main components of the cocoon-like self-degradable DNA nanoclew, consisting of DOX/FA-NCl/NCa, and acid-triggered DOX release. (b) Schematic illustration of efficient delivery of DOX by DOX/FA-NCl/NCa to nuclei for cancer therapy: (I) internalization in endosomes; (II) pH-triggered degradation of the NCl for DOX release; (III) accumulation of DOX in cell nuclei.
Figure 2
Figure 2
(a) Hydrodynamic size of NCl as determined by dynamic light scattering (DLS). Inset: atomic force microscopy (AFM) image of NCl. The scale bar is 500 nm. (b) Hydrodynamic size of NCa. Inset: transmission electron microscopy (TEM) image of NCa. The scale bar is 10 nm. (c) Circular dichroism (CD) spectra of native DNase I and NCa. (d) DNA-degrading activities of NCa and cNCa at pH 7.4 and 5.4. Bars represent mean ± standard deviation (n = 3).
Figure 3
Figure 3
(a) Hydrodynamic size of NCl/NCa complexes. Inset: TEM image of an NCl/Au-NCa complex. The scale bar is 100 nm. The arrows indicate Au-NCa adsorbed on the NCl surface. (b) DOX release from DOX/NCl/NCa and DOX/NCl/cNCa at pH 7.4 and 5.4. Bars represent mean ± SD (n = 3). (c) AFM images of NCl/NCa complexes after incubation at pH 7.4 and 5.4 for 2 h. The scale bar is 500 nm.
Figure 4
Figure 4
(a) Relative uptake efficiency of DOX/FA-NCl/NCa by MCF-7 cells. **, P < 0.01 compared with the control. Bars represent mean ± SD (n = 3). (b) Confocal laser scanning microscopy images of MCF-7 cells after incubation with DOX/FA-NCl/NCa for different times. Late endosome and lysosomes were stained with LysoTracker green. Red, DOX; green, endolysosome; blue, Hoechst 33342; yellow, colocalization of red and green pixels; magenta, colocalization of red and blue pixels. The scale bar is 10 μm. (c) In vitro cytotoxicities of DOX/NCl, DOX/NCl/NCa, and DOX/FA-NCl/NCa against MCF-7 cells for 24 h. *, P < 0.05. Bars represent mean ± SD (n = 6). (d) In vitro cytotoxicities of the blank FA-NCl, NCa, and FA-NCl/NCa against MCF-7 cells for 24 h. Bars represent mean ± SD (n = 6).

References

    1. Lee H.; Lytton-Jean A. K. R.; Chen Y.; Love K. T.; Park A. I.; Karagiannis E. D.; Sehgal A.; Querbes W.; Zurenko C. S.; Jayaraman M.; Peng C. G.; Charisse K.; Borodovsky A.; Manoharan M.; Donahoe J. S.; Truelove J.; Nahrendorf M.; Langer R.; Anderson D. G. Nat. Nanotechnol. 2012, 7, 389–393. - PMC - PubMed
    2. Douglas S. M.; Bachelet I.; Church G. M. Science 2012, 335, 831–834. - PubMed
    3. Andersen E. S.; Dong M.; Nielsen M. M.; Jahn K.; Subramani R.; Mamdouh W.; Golas M. M.; Sander B.; Stark H.; Oliveira C. L. P.; Pedersen J. S.; Birkedal V.; Besenbacher F.; Gothelf K. V.; Kjems J. Nature 2009, 459, 73–76. - PubMed
    4. Zhang Z.; Eckert M. A.; Ali M. M.; Liu L.; Kang D.-K.; Chang E.; Pone E. J.; Sender L. S.; Fruman D. A.; Zhao W. ChemBioChem 2014, 15, 1268–1273. - PubMed
    5. Lo P. K.; Karam P.; Aldaye F. A.; McLaughlin C. K.; Hamblin G. D.; Cosa G.; Sleiman H. F. Nat. Chem. 2010, 2, 319–328. - PubMed
    6. Zhang Z.; Ali M. M.; Eckert M. A.; Kang D.-K.; Chen Y. Y.; Sender L. S.; Fruman D. A.; Zhao W. Biomaterials 2013, 34, 9728–9735. - PubMed
    7. Zhu G.; Hu R.; Zhao Z.; Chen Z.; Zhang X.; Tan W. J. Am. Chem. Soc. 2013, 135, 16438–16445. - PMC - PubMed
    8. Hu R.; Zhang X.; Zhao Z.; Zhu G.; Chen T.; Fu T.; Tan W. Angew. Chem., Int. Ed. 2014, 53, 5821–5826. - PubMed
    1. Kim K.-R.; Kim D.-R.; Lee T.; Yhee J. Y.; Kim B.-S.; Kwon I. C.; Ahn D.-R. Chem. Commun. 2013, 49, 2010–2012. - PubMed
    2. Zhao Y.-X.; Shaw A.; Zeng X.; Benson E.; Nyström A. M.; Högberg B. ACS Nano 2012, 6, 8684–8691. - PubMed
    1. Lee J. B.; Hong J.; Bonner D. K.; Poon Z.; Hammond P. T. Nat. Mater. 2012, 11, 316–322. - PMC - PubMed
    1. Schüller V. J.; Heidegger S.; Sandholzer N.; Nickels P. C.; Suhartha N. A.; Endres S.; Bourquin C.; Liedl T. ACS Nano 2011, 5, 9696–9702. - PubMed
    2. Li J.; Pei H.; Zhu B.; Liang L.; Wei M.; He Y.; Chen N.; Li D.; Huang Q.; Fan C. ACS Nano 2011, 5, 8783–8789. - PubMed
    1. Wang K.; You M.; Chen Y.; Han D.; Zhu Z.; Huang J.; Williams K.; Yang C. J.; Tan W. Angew. Chem., Int. Ed. 2011, 50, 6098–6101. - PubMed

Publication types