The role of dynamic instability in microtubule organization
- PMID: 25339962
- PMCID: PMC4188131
- DOI: 10.3389/fpls.2014.00511
The role of dynamic instability in microtubule organization
Abstract
Microtubules are one of the three major cytoskeletal components in eukaryotic cells. Heterodimers composed of GTP-bound α- and β-tubulin molecules polymerize to form microtubule protofilaments, which associate laterally to form a hollow microtubule. Tubulin has GTPase activity and the GTP molecules associated with β-tubulin molecules are hydrolyzed shortly after being incorporated into the polymerizing microtubules. GTP hydrolysis alters the conformation of the tubulin molecules and drives the dynamic behavior of microtubules. Periods of rapid microtubule polymerization alternate with periods of shrinkage in a process known as dynamic instability. In plants, dynamic instability plays a key role in determining the organization of microtubules into arrays, and these arrays vary throughout the cell cycle. In this review, we describe the mechanisms that regulate microtubule dynamics and underlie dynamic instability, and discuss how dynamic instability may shape microtubule organization in plant cells.
Keywords: GTP hydrolysis; cortical array; dynamic instability; microtubule; phragmoplast; tubulin.
Figures


Similar articles
-
Bacterial Tubulins A and B Exhibit Polarized Growth, Mixed-Polarity Bundling, and Destabilization by GTP Hydrolysis.J Bacteriol. 2017 Sep 5;199(19):e00211-17. doi: 10.1128/JB.00211-17. Print 2017 Oct 1. J Bacteriol. 2017. PMID: 28716960 Free PMC article.
-
On and around microtubules: an overview.Mol Biotechnol. 2009 Oct;43(2):177-91. doi: 10.1007/s12033-009-9193-5. Epub 2009 Jun 30. Mol Biotechnol. 2009. PMID: 19565362 Review.
-
Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP.Mol Biol Cell. 1992 Oct;3(10):1155-67. doi: 10.1091/mbc.3.10.1155. Mol Biol Cell. 1992. PMID: 1421572 Free PMC article.
-
The minimum GTP cap required to stabilize microtubules.Curr Biol. 1994 Dec 1;4(12):1053-61. doi: 10.1016/s0960-9822(00)00243-8. Curr Biol. 1994. PMID: 7704569
-
Autoregulation and repair in microtubule homeostasis.Curr Opin Cell Biol. 2019 Feb;56:80-87. doi: 10.1016/j.ceb.2018.10.003. Epub 2018 Nov 8. Curr Opin Cell Biol. 2019. PMID: 30415186 Review.
Cited by
-
The Globodera pallida SPRYSEC Effector GpSPRY-414-2 That Suppresses Plant Defenses Targets a Regulatory Component of the Dynamic Microtubule Network.Front Plant Sci. 2018 Jul 12;9:1019. doi: 10.3389/fpls.2018.01019. eCollection 2018. Front Plant Sci. 2018. PMID: 30050557 Free PMC article.
-
Chemically Fueled Supramolecular Materials.Acc Mater Res. 2023 Apr 14;4(5):416-426. doi: 10.1021/accountsmr.2c00244. eCollection 2023 May 26. Acc Mater Res. 2023. PMID: 37256081 Free PMC article.
-
A stable microtubule array drives fission yeast polarity reestablishment upon quiescence exit.J Cell Biol. 2015 Jul 6;210(1):99-113. doi: 10.1083/jcb.201502025. Epub 2015 Jun 29. J Cell Biol. 2015. PMID: 26124291 Free PMC article.
-
Taccalonolides: A Novel Class of Microtubule-Stabilizing Anticancer Agents.Cancers (Basel). 2021 Feb 22;13(4):920. doi: 10.3390/cancers13040920. Cancers (Basel). 2021. PMID: 33671665 Free PMC article. Review.
-
The HDAC6 Inhibitor Trichostatin A Acetylates Microtubules and Protects Axons From Excitotoxin-Induced Degeneration in a Compartmented Culture Model.Front Neurosci. 2018 Nov 29;12:872. doi: 10.3389/fnins.2018.00872. eCollection 2018. Front Neurosci. 2018. PMID: 30555293 Free PMC article.
References
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources