Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Nov;20(11):1906-10.
doi: 10.3201/2011.131699.

Detection of rare G3P[19] group A rotavirus in human patient, Italy

Detection of rare G3P[19] group A rotavirus in human patient, Italy

Giovanni Ianiro et al. Emerg Infect Dis. 2014 Nov.

Abstract

Infection with a rare G3P[19] rotavirus A strain was identified in an immunosuppressed patient in Italy. The strain showed a P[19] viral protein 4 gene and a complete AU-1-like genomic constellation. Phylogenetic analyses showed high nucleotide identity between this strain and G3P[19] rotavirus A strains from Asia, indicating possible reassortment events.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Phylogenetic trees of rotavirus A (RVA) isolates based on the open reading frames of genes coding for the viral protein (VP) regions. A) VP1 (nt 73–390); B) VP2 (nt 1–425); C) VP3 (nt 44–880); D) VP7 (nt 48–1029); E) VP4 (nt 36–817); F) VP6 (nt 44–1326). The G3P[19] strain ROMA116 identified from the patient in Italy described in this article is highlighted with a black diamond. Trees were built with the maximum likelihood method and bootstrapped with 1,000 repetitions; bootstrap values <70 are not shown. Scale bars indicate nucleotide substitutions per site. Letters and numbers on the right indicate the specific gene genotype (http://rotac.regatools.be/classificationinfo.html).
Figure 2
Figure 2
Phylogenetic trees of rotavirus A (RVA) isolates based on the open reading frames of genes coding for the nonstructural protein (NS) regions. A) NS1 (nt 67–1087), B) NS2 (nt 47–1012), C) NS3 (nt 31–1049), D) NS4 (nt 49–660), and E) NS5 (nt 63–627). The G3P[19] strain ROMA116 identified from the patient in Italy described in this article is highlighted with a black diamond. Trees were built with the maximum likelihood method and bootstrapped with 1,000 repetitions; bootstrap values <70 are not shown. Scale bars indicate nucleotide substitutions per site. Letters and numbers on the right indicate the specific gene genotype (http://rotac.regatools.be/classificationinfo.html).

Similar articles

Cited by

References

    1. Estes MK, Kapikian AZ. Rotaviruses. In: Knipe DM, Howley PM, editors. Fields virology. 5th ed. Philadelphia: Lippincott, Williams & Wilkins; 2007. p. 1918–74.
    1. Gentsch JR, Laird AR, Bielfelt B, Griffin DD, Banyai K, Ramachandran M, et al. Serotype diversity and reassortment between human and animal rotavirus strains: implications for rotavirus vaccine programs. J Infect Dis. 2005;192(Suppl 1):S146–59 . 10.1086/431499 - DOI - PubMed
    1. Martella V, Banyai K, Matthijnssens J, Buonavoglia C, Ciarlet M. Zoonotic aspects of rotaviruses. Vet Microbiol. 2010;140:246–55. 10.1016/j.vetmic.2009.08.028 - DOI - PubMed
    1. Todd S, Page NA, Duncan Steele A, Peenze I, Cunliffe NA. Rotavirus strain types circulating in Africa: review of studies published during 1997–2006. J Infect Dis. 2010;202(Suppl):S34–42 . 10.1086/653555 - DOI - PubMed
    1. Ward RL, Kirkwood CD, Sander DS, Smith VE, Shao M, Bean JA, et al. Reductions in cross-neutralizing antibody responses in infants after attenuation of the human rotavirus vaccine candidate 89-12. J Infect Dis. 2006;194:1729–36 . 10.1086/509623 - DOI - PubMed

Publication types

LinkOut - more resources