Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Oct 23;10(10):e1004387.
doi: 10.1371/journal.ppat.1004387. eCollection 2014 Oct.

Theory and empiricism in virulence evolution

Affiliations
Review

Theory and empiricism in virulence evolution

James J Bull et al. PLoS Pathog. .
No abstract available

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Trade-off models for virulence evolution.
(A) A typical trade-off curve for virulence evolution, in this case between transmission rate and host mortality. The trade-off curve is a boundary on the mortality rate and transmission rate that the parasite can evolve. If the characteristics of the pathogen initially lie underneath the trade-off curve (red circle), the early evolution will be toward the boundary, and then along it, shown by arrows. (B) Parasite fitness (R0) is proportional to the ratio of transmission rate over the sum of recovery rate and mortality rate. By displacing the trade-off curve along the horizontal axis by an amount equal to the rate of recovery, the R0 of any point on the trade-off curve is simply the slope of the line from the origin to the point. The maximum R0 is thus achieved at the tangent of a line through the origin, as shown. This figure illustrates how the choice of the trade-off function affects what can be concluded about the evolution of virulence (mortality). Although recovery rate affects the optimum parasite fitness (R0), recovery is unaffected by evolution when it is not part of the trade-off (as shown here). However, if the trade-off instead was between transmission and recovery (swapping recovery and mortality rates on the x-axis), evolution of parasite fitness would affect only the rate of host recovery, and there would be no predictions about host mortality. (C) Data on R0 and pre-vaccination mortality rates for the viruses indicated (bottom) are abstracted from , and references therein. VZV, Varicella zoster virus.

References

    1. Ebert D (1998) Experimental evolution of parasites. Science 282: 1432–1435. - PubMed
    1. Kerr PJ (2012) Myxomatosis in Australia and Europe: a model for emerging infectious diseases. Antiviral Res 93: 387–415 10.1016/j.antiviral.2012.01.009 - DOI - PubMed
    1. Herfst S, Schrauwen EJA, Linster M, Chutinimitkul S, de Wit E, et al. (2012) Airborne transmission of influenza A/H5N1 virus between ferrets. Science 336: 1534–1541 10.1126/science.1213362 - DOI - PMC - PubMed
    1. Imai M, Watanabe T, Hatta M, Das SC, Ozawa M, et al. (2012) Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 486: 420–428 10.1038/nature10831 - DOI - PMC - PubMed
    1. Dieckmann U, Metz JAJ, Sabelis MW, editors (2005) Adaptive Dynamics of Infectious Diseases. First edition. New York: Cambridge University Press. 1 pp.

LinkOut - more resources