Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Oct 23;8(10):e3220.
doi: 10.1371/journal.pntd.0003220. eCollection 2014 Oct.

Current treatment for venom-induced consumption coagulopathy resulting from snakebite

Affiliations

Current treatment for venom-induced consumption coagulopathy resulting from snakebite

Kalana Maduwage et al. PLoS Negl Trop Dis. .

Abstract

Venomous snakebite is considered the single most important cause of human injury from venomous animals worldwide. Coagulopathy is one of the commonest important systemic clinical syndromes and can be complicated by serious and life-threatening haemorrhage. Venom-induced consumption coagulopathy (VICC) is the commonest coagulopathy resulting from snakebite and occurs in envenoming by Viperid snakes, certain elapids, including Australian elapids, and a few Colubrid (rear fang) snakes. Procoagulant toxins activate the clotting pathway, causing a broad range of factor deficiencies depending on the particular procoagulant toxin in the snake venom. Diagnosis and monitoring of coagulopathy is problematic, particularly in resource-poor countries where further research is required to develop more reliable, cheap clotting tests. MEDLINE and EMBASE up to September 2013 were searched to identify clinical studies of snake envenoming with VICC. The UniPort database was searched for coagulant snake toxins. Despite preclinical studies demonstrating antivenom binding toxins (efficacy), there was less evidence to support clinical effectiveness of antivenom for VICC. There were no placebo-controlled trials of antivenom for VICC. There were 25 randomised comparative trials of antivenom for VICC, which compared two different antivenoms (ten studies), three different antivenoms (four), two or three different doses or repeat doses of antivenom (five), heparin treatment and antivenom (five), and intravenous immunoglobulin treatment and antivenom (one). There were 13 studies that compared two groups in which there was no randomisation, including studies with historical controls. There have been numerous observational studies of antivenom in VICC but with no comparison group. Most of the controlled trials were small, did not use the same method for assessing coagulopathy, varied the dose of antivenom, and did not provide complete details of the study design (primary outcomes, randomisation, and allocation concealment). Non-randomised trials including comparison groups without antivenom showed that antivenom was effective for some snakes (e.g., Echis), but not others (e.g., Australasian elapids). Antivenom is the major treatment for VICC, but there is currently little high-quality evidence to support effectiveness. Antivenom is not risk free, and adverse reactions can be quite common and potentially severe. Studies of heparin did not demonstrate it improved outcomes in VICC. Fresh frozen plasma appeared to speed the recovery of coagulopathy and should be considered in bleeding patients.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Diagram of the clotting pathway showing the major clotting factors (blue) and their role in the activation of the pathway and clot formation.
The four major groups of snake toxins that activated the clotting pathway are in green and the intermediate or incomplete products they form are indicated in dark red. There are four major types of prothrombin activators, which either convert thrombin to form the catalytically active meizothrombin (Group A and B) or to thrombin (Group C and D).

References

    1. Kasturiratne A, Wickremasinghe AR, de Silva N, Gunawardena NK, Pathmeswaran A, et al. (2008) The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med 5: e218. - PMC - PubMed
    1. Isbister GK (2010) Snakebite doesn't cause disseminated intravascular coagulation: coagulopathy and thrombotic microangiopathy in snake envenoming. Semin Thromb Hemost 36: 444–451. - PubMed
    1. Isbister GK, Scorgie FE, O'Leary MA, Seldon M, Brown SG, et al. (2010) Factor deficiencies in venom-induced consumption coagulopathy resulting from Australian elapid envenomation: Australian Snakebite Project (ASP-10). J Thromb Haemost 8: 2504–2513. - PubMed
    1. Isbister GK (2009) Procoagulant snake toxins: laboratory studies, diagnosis, and understanding snakebite coagulopathy. Semin Thromb Hemost 35: 93–103. - PubMed
    1. Aitchison JM (1990) Boomslang bite–diagnosis and management. A report of 2 cases. S Afr Med J 78: 39–42. - PubMed

Publication types

LinkOut - more resources