Transition metal catalysis in confined spaces
- PMID: 25340992
- DOI: 10.1039/c4cs00192c
Transition metal catalysis in confined spaces
Abstract
Transition metal catalysis plays an important role in both industry and in academia where selectivity, activity and stability are crucial parameters to control. Next to changing the structure of the ligand, introducing a confined space as a second coordination sphere around a metal catalyst has recently been shown to be a viable method to induce new selectivity and activity in transition metal catalysis. In this review we focus on supramolecular strategies to encapsulate transition metal complexes with the aim of controlling the selectivity via the second coordination sphere. As we will discuss, catalyst confinement can result in selective processes that are impossible or difficult to achieve by traditional methods. We will describe the template-ligand approach as well as the host-guest approach to arrive at such supramolecular systems and discuss how the performance of the catalyst is enhanced by confining it in a molecular container.
Similar articles
-
Supramolecular control of transition metal complexes in water by a hydrophobic cavity: a bio-inspired strategy.Org Biomol Chem. 2015 Mar 14;13(10):2849-65. doi: 10.1039/c4ob02511c. Org Biomol Chem. 2015. PMID: 25608497 Review.
-
Transition Metal Catalysis Controlled by Hydrogen Bonding in the Second Coordination Sphere.Chem Rev. 2022 Jul 27;122(14):12308-12369. doi: 10.1021/acs.chemrev.1c00862. Epub 2022 May 20. Chem Rev. 2022. PMID: 35593647 Free PMC article. Review.
-
Asymmetric catalysis mediated by the ligand sphere of octahedral chiral-at-metal complexes.Angew Chem Int Ed Engl. 2014 Oct 6;53(41):10868-74. doi: 10.1002/anie.201404305. Epub 2014 Aug 25. Angew Chem Int Ed Engl. 2014. PMID: 25156957 Review.
-
Metal-ligand binding interactions in rhodium/palladium-catalyzed synthesis of dihydroquinolines.J Org Chem. 2014 Dec 19;79(24):12159-76. doi: 10.1021/jo502074s. Epub 2014 Nov 7. J Org Chem. 2014. PMID: 25337795
-
Remote supramolecular control of catalyst selectivity in the hydroformylation of alkenes.Angew Chem Int Ed Engl. 2011 Jan 10;50(2):396-400. doi: 10.1002/anie.201005173. Angew Chem Int Ed Engl. 2011. PMID: 21207363 No abstract available.
Cited by
-
The Cation-π Interaction in Small-Molecule Catalysis.Angew Chem Int Ed Engl. 2016 Oct 4;55(41):12596-624. doi: 10.1002/anie.201600547. Epub 2016 Jun 22. Angew Chem Int Ed Engl. 2016. PMID: 27329991 Free PMC article. Review.
-
Topological prediction of palladium coordination cages.Chem Sci. 2020 Oct 16;11(45):12350-12357. doi: 10.1039/d0sc03992f. Chem Sci. 2020. PMID: 34094444 Free PMC article.
-
Dynamic Complex-to-Complex Transformations of Heterobimetallic Systems Influence the Cage Structure or Spin State of Iron(II) Ions.Angew Chem Int Ed Engl. 2020 Feb 17;59(8):3195-3200. doi: 10.1002/anie.201914629. Epub 2020 Jan 9. Angew Chem Int Ed Engl. 2020. PMID: 31788925 Free PMC article.
-
Ligand Template Strategies for Catalyst Encapsulation.Acc Chem Res. 2018 Sep 18;51(9):2115-2128. doi: 10.1021/acs.accounts.8b00345. Epub 2018 Aug 23. Acc Chem Res. 2018. PMID: 30137959 Free PMC article.
-
Tailored oxido-vanadium(V) cage complexes for selective sulfoxidation in confined spaces.Chem Sci. 2017 Jan 1;8(1):789-794. doi: 10.1039/c6sc03045a. Epub 2016 Sep 5. Chem Sci. 2017. PMID: 28451228 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials