Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Oct 30;10(10):e1004772.
doi: 10.1371/journal.pgen.1004772. eCollection 2014 Oct.

De novo mutations in moderate or severe intellectual disability

Affiliations

De novo mutations in moderate or severe intellectual disability

Fadi F Hamdan et al. PLoS Genet. .

Abstract

Genetics is believed to have an important role in intellectual disability (ID). Recent studies have emphasized the involvement of de novo mutations (DNMs) in ID but the extent to which they contribute to its pathogenesis and the identity of the corresponding genes remain largely unknown. Here, we report a screen for DNMs in subjects with moderate or severe ID. We sequenced the exomes of 41 probands and their parents, and confirmed 81 DNMs affecting the coding sequence or consensus splice sites (1.98 DNMs/proband). We observed a significant excess of de novo single nucleotide substitutions and loss-of-function mutations in these cases compared to control subjects, suggesting that at least a subset of these variations are pathogenic. A total of 12 likely pathogenic DNMs were identified in genes previously associated with ID (ARID1B, CHD2, FOXG1, GABRB3, GATAD2B, GRIN2B, MBD5, MED13L, SETBP1, TBR1, TCF4, WDR45), resulting in a diagnostic yield of ∼29%. We also identified 12 possibly pathogenic DNMs in genes (HNRNPU, WAC, RYR2, SET, EGR1, MYH10, EIF2C1, COL4A3BP, CHMP2A, PPP1CB, VPS4A, PPP2R2B) that have not previously been causally linked to ID. Interestingly, no case was explained by inherited mutations. Protein network analysis indicated that the products of many of these known and candidate genes interact with each other or with products of other ID-associated genes further supporting their involvement in ID. We conclude that DNMs represent a major cause of moderate or severe ID.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Number of DNMs per affected individual in each trio.
Figure 2
Figure 2. Physical protein-protein interaction network generated by GeneMANIA (http://www.GeneMANIA.org/; Gene Ontology molecular function based weighting).
The Query genes included those listed in Table 3 from this study (in bold) and known and candidate ID genes reported with predicted-damaging DNMs from other studies (Table S2). Known ID genes are in red. The resulting network of 38 interconnected proteins was found to be enriched for proteins whose Gene Ontology molecular functions are implicated in the glutamate receptor signalling pathway (GRIN1, GRIN2A, GRIN2B, GRIA1, CACNG2, SHANK3; FDR q-value = 7.04e-6).

References

    1. Ropers HH (2010) Genetics of early onset cognitive impairment. Annu Rev Genomics Hum Genet 11: 161–187. - PubMed
    1. de Ligt J, Willemsen MH, van Bon BW, Kleefstra T, Yntema HG, et al. (2012) Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med 367: 1921–1929. - PubMed
    1. Hamdan FF, Gauthier J, Araki Y, Lin DT, Yoshizawa Y, et al. (2011) Excess of de novo deleterious mutations in genes associated with glutamatergic systems in nonsyndromic intellectual disability. Am J Hum Genet 88: 306–316. - PMC - PubMed
    1. Rauch A, Wieczorek D, Graf E, Wieland T, Endele S, et al. (2012) Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet 380: 1674–1682. - PubMed
    1. Vissers LE, de Ligt J, Gilissen C, Janssen I, Steehouwer M, et al. (2010) A de novo paradigm for mental retardation. Nat Genet 42: 1109–1112. - PubMed

Publication types

Substances