Regulation of cytosolic pH in bovine parathyroid cells: effect of fluoride
- PMID: 2535802
- DOI: 10.1210/endo-124-1-149
Regulation of cytosolic pH in bovine parathyroid cells: effect of fluoride
Abstract
In the present investigation, sodium fluoride (NaF) was employed to explore the role of guanine nucleotide-binding proteins (G-proteins), protein kinase-C, or cytosolic calcium [( Ca]i) in the regulation of cytosolic pH [( pH]i) in dispersed bovine parathyroid cells, using the pH-sensitive fluorescent dye BCECF. When cells acidified by nigericin in Na-free medium were resuspended in Na-containing buffer, [pH]i returned to basal levels. This recovery was blocked by continued removal of Na+ or the addition of amiloride. NaF (10 mM) increased [32P]phosphate incorporation into phosphatidylinositol bisphosphate, suggesting an increase in phosphatidylinositol bisphosphate turnover. NaF caused an initial acidification, followed by an alkaline recovery in a dose-dependent manner (1-10 mM). Amiloride blocked the NaF-induced alkaline recovery. The protein kinase-C activator phorbol 12-myristate 13-acetate (10(-7) M) caused cytosolic alkalinization, while the protein kinase-C inhibitor H7 (6 x 10(-5) M) significantly inhibited the NaF-induced alkaline recovery. Pertussis toxin (1 microgram/ml) did not affect the NaF-induced changes in [pH]i. Removal of extracellular Ca2+ with EGTA blocked the NaF-induced increase in [Ca]i and alkaline recovery. Ionomycin (5 x 10(-7) M) caused cytosolic alkalinization, but pretreatment with EGTA inhibited the ionomycin-induced cytosolic alkalinization. The present studies clearly demonstrated the presence of an amiloride-sensitive Na+/H+ exchanger in parathyroid cells. Our findings suggest that the NaF-induced cytosolic alkaline recovery was via two complementing pathways: 1) activation of protein kinase-C, followed by stimulation of a Na+/H+ exchanger, and 2) existence of extracellular calcium and/or an increase in [Ca]i.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous
