Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Jan 15;264(2):1016-21.

Peroxidase-catalyzed oxidation of eugenol: formation of a cytotoxic metabolite(s)

Affiliations
  • PMID: 2536013
Free article

Peroxidase-catalyzed oxidation of eugenol: formation of a cytotoxic metabolite(s)

D Thompson et al. J Biol Chem. .
Free article

Abstract

The oxidation of eugenol (4-allyl-2-methoxyphenol) by horseradish peroxidase was studied. Following the initiation of the reaction with hydrogen peroxide, eugenol was oxidized via a one-electron pathway to a phenoxyl radical which subsequently formed a transient, yellow-colored intermediate which was identified as a quinone methide. The eugenol phenoxyl radical was detected using fast-flow electron spin resonance. The radicals and/or quinone methide further reacted to form an insoluble complex polymeric material. The stoichiometry of the disappearance of eugenol versus hydrogen peroxide was approximately 2:1. The addition of glutathione or ascorbate prevented the appearance of the quinone methide and also prevented the disappearance of the parent compound. In the presence of glutathione, a thiyl radical was detected, and increases in oxygen consumption and in the formation of oxidized glutathione were also observed. These results suggested that glutathione reacted with the eugenol phenoxyl radical and reduced it back to the parent compound. Glutathione also reacted directly with the quinone methide resulting in the formation of a eugenol-glutathione conjugate(s). Using 3H-labeled eugenol, extensive covalent binding to protein was observed. Finally, the oxidation products of eugenol/peroxidase were observed to be highly cytotoxic using isolated rat hepatocytes as target cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources