Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Feb 15;264(5):2405-8.

An infrared study of the binding and photodissociation of carbon monoxide in cytochrome ba3 from Thermus thermophilus

Affiliations
  • PMID: 2536707
Free article

An infrared study of the binding and photodissociation of carbon monoxide in cytochrome ba3 from Thermus thermophilus

O Einarsdóttir et al. J Biol Chem. .
Free article

Abstract

The C-O stretching frequencies of fully reduced carbonmonoxy cytochrome ba3, a newly discovered terminal oxidase of the bacterium Thermus thermophilus (Zimmermann, B.H., Nitsche, C.I., Fee, J.A., Rusnak, F., and Münck, E. (1988) Proc. Natl. Acad. Sci. U.S. A. 85, 5779-5783), are studied by Fourier transform infrared spectroscopy. Multiple C-O frequencies are observed in the Fourier transform infrared spectra, indicating the presence of discrete interconverting conformers of the enzyme. Upon photolysis, the CO is shown to migrate exclusively to CuB+. Above 200 K, the CO returns to the heme a3 by a thermal process which follows simple first-order kinetics. The rate of the reaction was studied from 205 to 230 K and at 300 K, yielding the activation parameters delta H = 14.9 kcal/mol and delta S = -5 cal/mol/K. These are compared with previously determined activation parameters for CO recombination in mitochondrial cytochrome aa3 preparations (Fiamingo, F.G., Altschuld, R.A., Moh, P.P., and Alben, J.O. (1982) J. Biol. Chem. 257, 1639-1650). We report the novel finding that CO remains bound to CuB+ at room temperature during continuous photolysis of cytochrome ba3, and we conjecture on the possible interference of copper-bound CO in "flow-flash" and "triple-trap" studies of cytochrome c oxidases.

PubMed Disclaimer

Publication types

LinkOut - more resources