Tumor necrosis factor signal transduction. Tissue-specific serine phosphorylation of a 26-kDa cytosolic protein
- PMID: 2536751
Tumor necrosis factor signal transduction. Tissue-specific serine phosphorylation of a 26-kDa cytosolic protein
Abstract
Binding of tumor necrosis factor-alpha (TNF-alpha) to its receptor on U937 cells results in rapid and TNF dose-dependent phosphorylation of a cytosolic protein with an apparent molecular mass of 26,000 kDa (p26) and an isoelectric point of 5.6. Half-maximal phosphorylation of p26 was achieved at concentrations of 1.8 ng/ml and was detectable within 20 s of TNF-alpha treatment. p26 is phosphorylated exclusively at serine residues. p26 phosphorylation occurs at 37 degrees C as well as at 14 degrees C, indicating that internalization of the TNF receptor is not required for serine kinase activation. Dephosphorylation of p26 starts 10 min after TNF-induced phosphorylation, suggesting a possible regulatory function of this cytosolic protein within the post-TNF receptor signaling system. p26 is also phosphorylated upon treatment with lymphotoxin. In contrast, both interferon-gamma and lipopolysaccharide fail to induce p26 phosphorylation. Whereas phosphorylated p26 was detected in the TNF-sensitive breast cancer cell line CRL1500, other TNF-responsive tumor cell lines investigated lacked enhanced phosphorylation of p26 in response to TNF, indicating that the 26-kDa phosphoprotein (pp26) may be a cell type-specific second messenger molecule involved in TNF signal transduction in some, but not all, target cells. p26 is also phosphorylated in a subclone of U937 (U937.C27) that responds to TNF-alpha with differentiation, yet is resistant to TNF-alpha-mediated growth inhibition. In contrast, p26 is not phosphorylated in another U937 derivative (U937.G3) that is resistant to both TNF-alpha-induced growth arrest and differentiation, suggesting that pp26 may play a role in the TNF signaling pathway linked to differentiation processes rather than to growth control.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources