Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Dec;92(12):5778-88.
doi: 10.2527/jas.2014-8283. Epub 2014 Nov 3.

Effects of the porcine IGF2 intron 3-G3072A mutation on carcass cutability, meat quality, and bacon processing

Affiliations

Effects of the porcine IGF2 intron 3-G3072A mutation on carcass cutability, meat quality, and bacon processing

D L Clark et al. J Anim Sci. 2014 Dec.

Abstract

A SNP in a regulatory region of intron 3 within the porcine IGF2 gene (IGF2-G3072A) is associated with increased lean deposition and decreased fat deposition in pigs with paternal A alleles (APat) compared with pigs with paternal G alleles (GPat). However, data regarding fresh and processed meat quality characteristics of pigs with different alleles for this polymorphism are limited. A single heterozygote (AG) boar was bred to homozygous (AA) commercial Yorkshire-cross sows producing F1 barrows and gilts with either GPat or APat. Two farrowing groups of barrows and gilts were group housed, provided ad libitum access to a diet that met or exceeded NRC nutrient recommendations throughout production, and slaughtered at 176 d (±4 d) of age. Fresh LM quality and estimated percent fat-free lean measurements were taken on the left side of carcasses, while carcass cutouts were completed with right sides. Fresh belly and bacon processing traits were characterized for only block 1 pigs. Pig was treated as the experimental unit for all analyses. Ending live weight and HCW were not affected by IGF2 allele; however, 10th rib backfat thickness was 0.41 cm less (P=0.01), loin eye area was 4.0 cm2 greater (P=0.01), and predicted fat-free lean was over 2 percentage units greater (P<0.01) in APat pigs compared with GPat pigs. Furthermore, boneless lean cuts from the shoulder, loin, and ham were heavier (P<0.05) in APat pigs compared with GPat pigs. Minolta L* value was 2.36 units greater (P=0.03) but cooking loss was 1.82 percentage units greater (P<0.01) in APat pigs compared with GPat pigs. Additionally, despite reductions in subcutaneous fat, extractable intramuscular lipid from the LM was 0.64 percentage units greater (P=0.02) in APat pigs compared with GPat pigs. Bellies were 7.17 mm thinner (P=0.01), had 7.27 cm less flop distance (P=0.05), and tended to have 1.34 units greater iodine value (P=0.09) in APat pigs compared with GPat pigs. While not statistically different (P=0.30), the magnitude of difference in slicing yield as a percentage of green weight was 1.57 percentage units between bellies from APat pigs (85.83%) and bellies from GPat pigs (87.40%). Pigs with GPat had superior belly quality that may positively impact commercial bacon production. However, pigs with APat yielded a greater amount of lean product at the expense of producing lighter LM color and increased cooking loss.

Keywords: IGF2-G3072A; belly quality; carcass cutout; insulin-like growth factor; pig; single nucleotide polymorphism.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources