Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Oct 20:5:511.
doi: 10.3389/fimmu.2014.00511. eCollection 2014.

Biology of the RANKL-RANK-OPG System in Immunity, Bone, and Beyond

Affiliations
Review

Biology of the RANKL-RANK-OPG System in Immunity, Bone, and Beyond

Matthew C Walsh et al. Front Immunol. .

Abstract

Discovery and characterization of the cytokine receptor-cytokine-decoy receptor triad formed by receptor activator of nuclear factor kappa-B ligand (RANKL)-receptor activator of NF-κB (RANK)-osteoprotegerin (OPG) have led not only to immense advances in understanding the biology of bone homeostasis, but have also crystalized appreciation of the critical regulatory relationship that exists between bone and immunity, resulting in the emergence of the burgeoning field of osteoimmunology. RANKL-RANK-OPG are members of the tumor necrosis factor (TNF) and TNF receptor superfamilies, and share signaling characteristics common to many members of each. Developmentally regulated and cell-type specific expression patterns of each of these factors have revealed key regulatory functions for RANKL-RANK-OPG in bone homeostasis, organogenesis, immune tolerance, and cancer. Successful efforts at designing and developing therapeutic agents targeting RANKL-RANK-OPG have been undertaken for osteoporosis, and additional efforts are underway for other conditions. In this review, we will summarize the basic biology of the RANKL-RANK-OPG system, relate its cell-type specific functions to system-wide mechanisms of development and homeostasis, and highlight emerging areas of interest for this cytokine group.

Keywords: RANKL; TNFRSF11; TNFSF11; TRAF6; TRANCE; mTECs; osteoimmunology; rheumatoid arthritis.

PubMed Disclaimer

Figures

Figure 1
Figure 1
RANK signaling pathways. The RANK receptor lacks intrinsic enzymatic activity and therefore utilizes interaction with adaptor and docking proteins, including TRAFs 2, 3, 5, and 6, Gab2, and Cbl to activate downstream signaling. Gab2 and Cbl are associated with RANK-mediated activation of c-Src, PI3 kinase (PI3K), and Akt, while TRAFs 2 and 6 can activate the TAB1/TAB2/TAK1 complex, which (along with other upstream kinases) leads to activation of IKKβ and MAP kinases (MAPK). Activation of these pathways promotes translocation and activation of transcription factors including NFATc1, CREB, NFκB, AP-1, and MITF. Specific RANK-activated gene transcription varies depending on cell-type, but often involves feed forward expression of NFATc1, c-fos, and NFκB-related genes. RANK-associated TRAF3 has been implicated in negative regulation of the non-canonical NFκB2 pathway through regulation of the upstream kinase NIK. Inhibition of NIK is mediated by the TRAF3 RING finger domain, and is overcome when RANK activation by RANKL triggers autophagic/lysosomal degradation of TRAF3. While many of these mechanisms may be generalizable to various RANK-expressing cell-types, some mechanisms appear thus far to be osteoclast (OC) lineage-specific. The best characterized of these OC-associated mechanisms involves synergistic signaling between RANK and ITAM motif-containing proteins DAP12 and FcRγ (which associate with cell surface receptors OSCAR, PIR-A, or TREM-2) to activate the Syk-PLCγ pathway and flux calcium. This activity enhances NFATc1 and CREB activities. Synergy with RANK occurs via coordinate activation of Btk/Tec. RANK further regulates calcium flux in OC lineage cells by a mechanism involving transmembrane protein 64 (TMEM64) interaction with the sarcoplasmic endoplasmic reticulum Ca(2+) ATPase 2 (SERCA2). This mechanism further promotes CREB and NFATc1 activity.
Figure 2
Figure 2
Osteoimmunology and RANKL–RANK–OPG. Osteoimmunology involves cross-regulation between cells of the bone and immune systems, and in some cases in the source of pathogenic conditions like rheumatoid arthritis (RA). The interface between the synovium and bone joints is where RA occurs, and where many cellular interactions typical of osteoimmunity have been characterized. The unifying characteristic of many of these cellular interactions is often the interplay between sources of RANKL and RANK-expressing cells. Secondarily, there are factors secreted or provided through cell contact that promote RANKL and/or RANK expression. The net effect of osteoimmune interactions is largely tallied according to increased (or regulation of) bone loss due to enhanced RANKL-mediated osteoclast (OC) differentiation from pre-OCs. In addition to the usual sources of RANKL available to pre-OCs from bone-associated cells including bone stromal cells, osteoblasts (OBs), and osteocytes, an inflammatory environment provides other sources. B cells activated by TLR ligands, such as LPS, and expanded by T cell help induce RANKL expression. T cells, which are activated by dendritic cells (DCs) through MHC/Antigen (Ag)–TCR interactions, can also express RANKL, which can both act on pre-OCs, but can also act on DCs to promote their survival and to prolong T–DC interactions. DC interactions with helper T cells influence their differentiation into subsets such as Th1, Th2, and Th17. Th1 and Th2 cell elaboration of IFNγ and IL-4, respectively, exhibit modulating effects on RANK-mediated osteoclastogenesis. However, IL-17 produced by Th17 cells can act to induce RANKL, especially by synovial fibroblasts under inflammatory conditions. Synovial macrophages may also enhance fibroblast expression of RANKL through secretion of inflammatory cytokines like IL-1, IL-6, and TNF-α. At the same time, mitigation of potentially deleterious effects of osteoimmune interactions may be provided by secretion of OPG, which attenuates the potency of available RANKL.

References

    1. Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell (2001) 104(4):487–501.10.1016/S0092-8674(01)00237-9 - DOI - PubMed
    1. Robinson LJ, Borysenko CW, Blair HC. Tumor necrosis factor family receptors regulating bone turnover: new observations in osteoblastic and osteoclastic cell lines. Ann N Y Acad Sci (2007) 1116:432–43.10.1196/annals.1402.025 - DOI - PubMed
    1. Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature (1997) 390(6656):175–9.10.1038/36593 - DOI - PubMed
    1. Wong BR, Josien R, Lee SY, Sauter B, Li HL, Steinman RM, et al. TRANCE (tumor necrosis factor [TNF]-related activation-induced cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cell-specific survival factor. J Exp Med (1997) 186(12):2075–80.10.1084/jem.186.12.2075 - DOI - PMC - PubMed
    1. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell (1998) 93(2):165–76.10.1016/S0092-8674(00)81569-X - DOI - PubMed