Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Dec;45(12):3684-90.
doi: 10.1161/STROKEAHA.114.006600. Epub 2014 Nov 4.

Intraluminal cell transplantation prevents growth and rupture in a model of rupture-prone saccular aneurysms

Affiliations

Intraluminal cell transplantation prevents growth and rupture in a model of rupture-prone saccular aneurysms

Serge Marbacher et al. Stroke. 2014 Dec.

Abstract

Background and purpose: Aneurysm occlusion by intraluminal thrombus formation is the desired effect of all endovascular treatments. Intraluminal thrombus may, however, recanalize and be absorbed, unless it is infiltrated by cells that turn it into fibrous tissue (neointima). Because ruptured aneurysm walls are characterized by loss of smooth muscle cells, we assessed the impact of mural cell loss on wall remodeling of thrombosed aneurysms and investigated whether neointima formation could be enhanced by direct transplantation of cells into the thrombus.

Methods: Sidewall aneurysms were microsurgically created in rats (n=81). Certain aneurysms were decellularized. Thrombosis was induced using direct injection of a fibrin polymer into the aneurysm. CM-Dil-labeled smooth muscle cells were injected into 25 of 46 fibrin embolized aneurysms. Recanalization and aneurysm growth were monitored with magnetic resonance angiography. Endoscopy, optical projection tomography, histology, and immunohistochemistry were used to study the fate of transplanted cells, thrombus organization, and neointima formation.

Results: Decellularized embolized aneurysms demonstrated higher angiographic recurrence compared with decellularized embolized aneurysms with transplanted cells (P=0.037). Local cell replacement at the time of thrombosis resulted in better histological neointima formation than both nondecellularized embolized aneurysms (P<0.001) and decellularized embolized aneurysms (P=0.002). Aneurysm growth and rupture were observed exclusively in decellularized embolized aneurysms.

Conclusions: Lack of smooth muscle cells in the aneurysm wall promotes wall degradation, aneurysm growth and rupture, even if the aneurysm is occluded by luminal thrombus. Transplantation of smooth muscle cells into the luminal thrombus can reduce this degenerative remodeling.

Keywords: cell transplantation; degeneration; inflammation; intracranial aneurysm; myofibroblasts; smooth muscle cells; thrombosis.

PubMed Disclaimer

Publication types

LinkOut - more resources